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Selecting the Optimal NDVI Time-Series Reconstruction Technique for Crop 
Phenology Detection
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Agricultural Sciences, Beijing, China

ABSTRACT
A new scored method has been proposed in this study to evaluate the performances of different NDVI 
time-series reconstruction techniques. By giving a synthetic score to each of the candidates techniques 
based on two quantified criteria the optimal one is selected for the purpose of phenology detection. 
Three widely used techniques including Asymmetric Gaussian function fitting (AG), Double Logistic 
function fitting (DL) and Savitzky-Golay filtering (SG) are compared using NDVI time-series products 
from Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra satellite over cropland of 
Northeast China. The results show that AG approach outperforms the two others in our study area. 
Cropland NDVI values have been improved obviously after the reconstruction by AG. Spatial patterns 
of the crop phenology detected from the AG reconstructed NDVI time-series are reasonable. The errors 
of the derived crop phenology metrics are within an acceptable limit.
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1. Introduction

Normalized difference vegetation index (NDVI) is designed by 
enhancing the difference between the spectral reflectance of 
visible and infrared band to reflect vegetation status in remote 
sensing (Brown, Kastens, Coutinho, Victoria, & Bishop, 2013; 
Landmann, Schramm, Huettich, & Dech, 2013). Time-series 
of NDVI data from satellite sensors carry useful information 
about vegetation phenology, which can be used for character-
izing growth process and seasonal dynamics of vegetation in 
support of research on climate change and ecosystem response 
(Fensholt & Proud, 2012; Forkel et al., 2013; Kariyeva & Van 
Leeuwen, 2011; Li, Zhao, & Yang, 2011; Verbesselt, Hyndman, 
Zeileis, & Culvenor, 2010). However, due to unfavourable 
atmospheric conditions and viewing geometries during the 
data acquisition, NDVI time-series curve often contains a lot 
of noise and fluctuates greatly (Motohka, Nasahara, Murakami, 
& Nagai, 2011; Park, 2013). So there is a strong need for the 
reconstruction of NDVI time-series before extracting infor-
mation from the noisy data.

Although most of the NDVI data products are temporally 
composited through maximum value compositing (MVC) 
method (Holben, 1986) to retain relatively cloud-free data, 
residual noise still exists in the data, which will prevent the 
accurate detection of vegetation phenology. Several techniques 
have been presented to reduce noise and reconstruct NDVI 
time-series, which can be grouped into two general types:  
filtering methods and function fitting methods (Reed, Schwartz, 
& Xiao, 2009). Filtering methods consist of Savitzky-Golay 
filtering (SG) (Chen et al., 2004), the best index slope extrac-
tion (BISE) (Viovy, Arino, & Belward, 1992) and its modified 
version (Lovell & Graetz, 2001), moving median and mean 
filtering (Kogan & Sullivan, 1993), temporal window operation 

(TWO) (Park & Tateishi, 1998), maximum value iteration fil-
tering (MVI) (Taddei, 1997), fast Fourier (Sellers et al., 1994) 
and wavelet (Lu, Liu, & Liang, 2007) transformation based 
frequency domain low pass filtering, 4253H Twice (4253HT) 
filtering (Velleman, 1980), ARMD3-ARMA5 (ARM3–5) fil-
tering (Davis, 2002) and iterative interpolation for data recon-
struction (IDR) (Julien & Sobrino, 2010), etc. Function fitting 
methods include Asymmetric Gaussian function fitting (AG) 
(Jönsson & Eklundh, 2002), Double Logistic function fitting 
(DL) (Beck, Atzberger, Høgda, Johansen, & Skidmore, 2006), 
Fourier function fitting such as harmonic analysis of time- 
series (HANTS) (Roerink, Menenti, & Verhoef, 2000) and 
Sellers algorithm (Sellers et al., 1996), piecewise Logistic func-
tion fitting (PL) (Zhang et al., 2003), etc.

Previous literatures have evaluated the performances of dif-
ferent noise reduction techniques for NDVI time-series either 
qualitatively or quantitatively (Bradley, Jacob, Hermance, & 
Mustard, 2007; Geng et al., 2014; Hird & McDermid, 2009; 
Julien & Sobrino, 2010; Michishita, Jin, Chen, & Xu, 2014). 
Although relatively easy, qualitative evaluations may only 
reveal the technique that produces the most visually pleasing 
result. Quantitative evaluations may be more accurate, but with 
more complex analysis. How to evaluate different noise reduc-
tion techniques both easily and accurately? Moreover, phenol-
ogy detection is an important application of NDVI time-series. 
With an increasingly emphasis of food secure, comprehensive 
understanding of crops is critical and crop phenology is a very 
important element in it. Accuracy information about crop phe-
nology will be useful in irrigation scheduling, fertilizer man-
agement and yield estimating (Shan & Xu, 2013; Xu, Yang, 
Long, & Wang, 2013). An appropriate reconstruction technique 
will restore the ‘true’ NDVI time-series as much as possible and 
facilitate crop phenology detection.

KEYWORDS
NDVI; time-series 
reconstruction; crop 
phenology; MODIS
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NDVI time-series produced by the selected technique. The 
paper is organized as follows: First, the significance of this 
study is investigated; second, relevant datasets and methods are 
introduced; then the experimentation results are showed and 
analyzed; at last the conclusions and future work are discussed.

2. Methodology

Figure 1 shows the flowchart of this study in which the overall 
procedures are divided into three steps (see the rectangle boxes 
in dashed line). The process starts with the data preparation to 
extract noisy NDVI time-series for sample points and the whole 
cropland of study area (Step 1). In the second step we have 
developed a new scored method to compare different NDVI 
time-series reconstruction techniques and selected the optimal 
one under given conditions (Step 2). Finally crop phenology 
metrics of the study area is derived based on the reconstructed 
NDVI time-series produced by the selected optimal technique 
and validated using ground phenology observations (Step 3).

2.1. Study area and datasets

The study area is located in Northeast China including three 
provinces: Heilongjiang, Jilin and Liaoning (Figure 2). It covers 
an area of 791,800 km2, in which 264,400 km2 is cropland, 
accounting for 16.5% of the total arable land in China. This 
region displays a boreal and temperate moist (humid) climate. 
Most parts of the region have an accumulated temperature 
(AT) ≥0 °C of 2000-4,200 °C.days, an active AT ≥ 0 °C of 2000-
4,200 °C. days, average summer temperature of 20–25 °C, a 

TIMESAT (Jönsson & Eklundh, 2004) is a software pack-
age developed for analyzing time-series of remote sensing 
data from satellite sensor. It provides three techniques for the 
reconstruction of NDVI time-series including SG, AG and 
DL, which have been widely used by a lot of studies. Brown, 
de Beurs, and Vrieling (2010) used SG to smooth the NDVI 
time-series before extracting vegetation phenology of Africa 
continent for the year 1981–2008. Tuanmu et al. (2010) also 
processed time-series data by means of SG and then obtained 
phenological cycles for further analysis. Li et al. (2009) gener-
ated smooth time-series of NDVI using AG for the research 
of crop phenological characteristics and cropping system in 
North China. Wu et al. (2010) characterized spatial patterns 
of phenology in cropland of China based on AG reconstructed 
NDVI time-series. Butt, Turner, Singh, and Brottem (2011) 
estimated phenology metrics in western Africa using a DL fit-
ted NDVI time-series from MODIS for the period 2000–2010. 
Cai, Zhang, and Yang (2012) investigated the dynamics of forest 
phenology in relation to climate change with selecting DL for 
the time-series data reconstruction.

There is a problem that various kinds of NDVI time-series 
reconstruction techniques often confuse us. It is difficult to 
determine which one should be chosen when we need to recon-
struct NDVI time-series for phenology detection. A new scored 
method has been proposed in this paper aims to evaluate the 
performances of different reconstruction techniques and select 
the optimal one for the purpose of crop phenology detection. 
The objectives of this study are: (i) to determine which of the 
candidate techniques perform best under given conditions, 
and (ii) to detect crop phenology based on the reconstructed 

Step2

Reconstructed NDVI 
time-series for sample points 

Pixel Reliability 
data

Score of criterion 1 
for each technique

Score of criterion 2 
for each technique

Synthetic score for 
each technique

The selected optimal 
technique

Step3

Reconstructed 
NDVI 

time-series for 
cropland of 

the study area 

Derived 
phenology 

metrics

Validation

Definitions 
of phenology 
metrics from 

NDVI 
time-series

Ground 
phenology 

observations

Step1

Cropland mask data 
from land use map

MODIS 1km 
16-day NDVI

Position of 
agro-meteorological stations

Noisy NDVI time-series for 
cropland of study area

Noisy NDVI time-series for 
sample points 

Candidate 
techniques

Figure 1. Flowchart of the Basic Steps and Procedures Followed in this Study.
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frost-free period of 140–170 days and precipitation of 500–
800 mm (60% of the rainfall concentrates between July and 
September) (Guo, Zhang, & Wang, 2010). The major crops of 
this region are corn, rice, wheat and soybean, and the region 
exhibits considerable internal differences in the planting 
structure.

The MOD13A2 (version 005) NDVI and Data Pixel 
Reliability products from Moderate Resolution Imaging 
Spectroradiometer (MODIS) on Terra are used for our anal-
ysis. The data are produced by a modified MVC method to 
minimize the view angle effects and consequently BRDF related 
issues. The composite periods are 16 days with a spatial resolu-
tion of 1 km. We have acquired the data-set from the website 
of Land Processes Distributed Active Archive Center (https://
lpdaac.usgs.gov/products/modis_products_table). The down-
load data  covered the complete year of 2005, which consist 
of 23 images. The data are HDF (Hierarchical Data Format) 
files and contain several data layers. MODIS Reprojection Tool 
(MRT) is used to extract the desired data layers and re-project 
them into Albers Conical Equal Area Projection. NDVI in the 
data-set ranged from -3,000 to 10,000, in which -3,000 is the 
fill value and a factor of 0.0001 is used to convert the DN value 
to standard NDVI.

The land use/cover map of China in 2005 has been employed 
to build a cropland mask for the study area. This data-set, which 
has a spatial resolution of 30 m with a scale of 1: 250,000, is 
from a national land use survey performed via remote sensing 

Figure 2. Study Area as Well as Geographical Distribution of Cropland and Agro-meteorological Stations.

and provided by the Chinese Academy of Sciences. We have 
resampled the data-set to 1 km to match the NDVI data and 
used the cropland coverage data layer for masking analysis. 
There are 84 agro-meteorological stations distributed uni-
formly within the study area (see also in Figure 2) from which 
ground phenology observations are collected and provided by 
the China Meteorological Administration.

2.2. Methods

We have taken pixels in which agro-meteorological stations 
located as sample points and extracted the NDVI time-series 
from these points for the evaluation of different reconstruction 
techniques.

2.2.1 Candidate reconstruction techniques
Comparisons are conducted among three widely used recon-
struction techniques provided by TIMESAT including AG, DL 
and SG.

AG approach fits the time-series curve from local to global 
and the process can be divided into three parts: interval extrac-
tion, local fitting and functions merging. First, the peak and val-
ley values of an original NDVI time-series curve are extracted. 
Then the left and right parts of the curve are separately fitted 
using a Gaussian function. The local fitting function is given as
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while observations with rank value of 2 or 3 are considered to 
be contaminated.

Because clouds and poor atmospheric conditions usually 
depress NDVI values, most of the reconstruction techniques 
try to approach the upper envelope of the NDVI time-series 
curve. We have introduced 2 criteria presented by Julien and 
Sobrino (2010) and evaluated the performance of different 
reconstruction techniques by 1) distance to original data and 
2) proximity to the upper envelope of the raw time-series. For 
the uncontaminated observations the average of the distance 
between raw and reconstructed time-series are used to rep-
resent distance to original data. For the contaminated obser-
vations the frequencies of reconstructed observations with 
lower NDVI than the raw observations are calculated to reflect 
proximity to the upper envelope of the raw time-series. Lower 
values of the preceding criteria correspond to shorter distance 
to original data and better proximity to the upper envelope of 
the raw time-series. A synthetic scored method has been pro-
posed to determine the best reconstruction technique of the 
three candidates. For each of the two criteria to every sample 
point the reconstruction technique with lowest value gets one 
score while others get zero (when there are more than one 
lowest value each one gets one score). The best reconstruction 
technique is identified as the one with the highest average score 
of the two criteria’s sum for all sample points.

2.2.3 Phenology detection from NDVI time-series
After the reconstruction the NDVI time-series curves can 
characterize the annual dynamic features of crop growth much 
better. Therefore, it is feasible to derive the phenology metrics 
of crops such as the dates of seedling emergence, heading and 
maturity from the smoothed NDVI time-series. Many stud-
ies have used threshold method to achieve this goal. Justice, 
Townshend, Holben, and Tucker (1985) took 0.099 as the 
NDVI threshold of vegetation growth start. Fischer (1994) 
and Markon, Fleming, and Binnian (1995) used 0.17 and 0.09 
for the start of growth based on NDVI time-series, respec-
tively. However, a significant limitation is that varied land sur-
faces require the use of different thresholds. Thus, a dynamic 
threshold as a percentage of the distance between minimum 
and maximum at the increase and decrease parts of the NDVI 
time-series curve is presented. Because 20% has been the most 
often used threshold (Heumann, Seaquist, Eklundh, & Jönsson, 
2007; Li et al., 2009; Wu et al., 2010), here we also adopt it to 
determine the onset-of-growth and end-of-growth. In such, 
the onset-of-growth is determined to be the date when the 
reconstructed NDVI time-series curve increases to 20% of 
the overall level. Similarly, the end-of-growth is determined 
to be the date when the reconstructed NDVI time-series curve 
reduces to 20% of the overall level. For the peak-of-growth it 
is defined as the date corresponding to the maximum of the 
reconstructed NDVI time-series curve. To validate the derived 
crop phenology metrics ground phenology observations from 
agro-meteorological stations are used. In our study area of 

where c1 and c2 are linear parameters that determine the base 
level and the amplitude; the non-linear parameters a1 to a5 
determine the shape of the Gaussian function g(t,a1,…,a5). 
These parameters can be generated via the calculation of the 
optimizing function. The global function is given as
 

Here α(t) and β(t) are cut-off functions that in small intervals 
around (tL + tC)/2 and (tC + tR)/2, respectively, smoothly drop 
from 0 to 1. The global function assumes the character of fL(t), 
fC(t) and fR(t) in, respectively, the left, central and right part 
of the interval [tL, tR]. The merging of the local functions to a 
global function is a key feature of the method. It increases the 
flexibility and allows the fitted function to follow a complex 
behavior of the time-series (Jönsson & Eklundh, 2002).

DL approach is very similar to AG and the only difference 
is local fitting function. For DL there is one parameter less 
than AG in the local fitting function and the basis function 
g(t,a1,…,a4) is in double logistic form as

 

Similarly parameters a1 to a4 determine the position of the 
inflection point and the rate of change at this point for the 
left and right parts. Also for this function the parameters 
are restricted in range to ensure a smooth shape (Jönsson & 
Eklundh, 2004).

SG approach is a simplified least square fit convolution 
firstly proposed by Savitzky and Golay for smoothing and 
computing derivatives of a set of consecutive values. The con-
volution can be understood as a weighted moving average filter 
with weighting given as a polynomial of a certain degree. The 
general equation of the simplified least square convolution for 
NDVI time-series smoothing is given as:

 

where Y is the original NDVI value, Y′ is the resultant NDVI 
value, Ci is the coefficient for the ith NDVI value of the filter, 
and N = 2n+1 is the smoothing window size. The index j is the 
running index of the original ordinate data table. The smooth-
ing window size and the degree of the smoothing polynomial 
will influence the results (Chen et al., 2004).

2.2.2 Best reconstruction assessment
NDVI time-series can reflect the annual cycle of vegetation 
growth and decline, but the observations are often contami-
nated by unfavourable atmospheric conditions. For the most 
strategies to reduce noise and reconstruct NDVI time-se-
ries, uncontaminated observations are regarded as ‘true’ and 
retained while contaminated observations are regarded as noise 
and modified. That is to say a proper reconstruction technique 
should perform best both on the fidelity of the reconstructed 
time-series to the uncontaminated observations and the cor-
rect modification of the contaminated observations. Pixel 
Reliability data layer from MOD13A2 data-set are used to 
identify whether one observation had been contaminated. 
This layer contains values that have been ranked into five cat-
egories to describe the overall pixel quality (Table 1) (Ramon, 
Kamel, Andree, & Huete, 2010). In this study, observations 
with rank value of 0 or 1 are identified as uncontaminated 
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Table 1. MOD13A2 Pixel Reliability.

Rank Key Summary QA Description
−1 Fill/No Data Not Processed
0 Good Data Use with confidence
1 Marginal Data Useful, but look at other QA information
2 Snow/Ice Target covered with snow/ice
3 Cloudy Target not visible, covered with cloud
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crops within the cropland. However, the fitted curves tend to 
approach the upper envelope of the original data for all the crop 
types. AG has obtained the persistent results and most of the 
noisy points in the NDVI time-series are modified correctly 
except the 13th observation for wheat as well as the 5th and 
22nd observation for soybean. DL results are very similar to 
AG for corn and soybean, but it seemed to overestimate NDVI 
peak values for rice and wheat. SG results come much closer to 
the original data at the starts and ends of the NDVI time-series 
and overestimated the peak value for corn and soybean. In gen-
eral, AG, DL and SG approaches are all effective for reducing 
noise and reconstructing NDVI time-series. It is difficult to 
determine which one perform best only by visual examination.

3.1.2 Selection of the optimal technique using scored 
method

Figure 4a shows the synthetic scores for three candidate recon-
struction techniques. The two function fitting techniques—AG 
and DL perform similarly with synthetic score of 1.24 and 1.15, 
respectively. The filtering method - SG performs not so well 
with a lower synthetic score of 0.89. Take AG as reference, the 
largest difference of synthetic scores is 28% (between AG and 
SG). However, more complex patterns emerge when the scores 

Northeast China where crops only have one harvest per year, 
the onset-of-growth date corresponds to the observed seed-
ling stage; the peak-of-growth date represents the observed 
heading stage (tasseling stage for corn and pod-bearing stage 
for soybean); the end-of-growth date may correspond to the 
observed maturity stage (Table 2) (Li et al., 2012).

3. Experimentation and Discussion

3.1 Results

The experimentation results are consisting of five parts. The 
reconstructed NDVI time-series curves, the scores for selec-
tion of the optimal technique, the effect of reconstruction for 
NDVI images, spatial patterns and validation results of crop 
phenology metrics are showed.

3.1.1 Qualitative comparisons of candidate techniques

The original and reconstructed NDVI time-series with AG, DL 
and SG approaches for major crop types in the study area are 
shown in Figure 3. As seen in the figure, peak values of corn 
and wheat are higher than rice and soybean, which suggests 
differences exist in the NDVI time-series for various kinds of 

Table 2. Definitions of Derived Phenology Metrics From NDVI Time-series and Corresponding Ground Phenology Observations for Crops in Northeast China.

Derived phenology metrics Definition Corresponding ground phenology 
observations

Onset-of-growth Date when the reconstructed NDVI time-series 
curve increases to 20% of the overall level

Seedling stage

Peak-of-growth Date when the reconstructed NDVI time-series 
curve reaches the maximum

Heading stage

End-of-growth Date when the reconstructed NDVI time-series 
curve reduces to 20% of the overall level

Maturity stage

Figure 3. Comparison of the AG, DL and SG Approaches with the Original NDVI Time-series for Major Crop Types in the Study Area: Corn (a), Rice (b), Wheat (c) and 
Soybean (d).
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DL prove better able to approach the upper envelope of the raw 
time-series. Overall, AG performs best among three candidate 
techniques under given conditions in this study.

3.1.3 Improvement of NDVI image by selected Technique

Examples of the original MODIS NDVI image produced 
through MVC method and the corresponding AG recon-
structed results for cropland of the study area are shown in 
Figure 5. The acquisition dates of the NDVI values are between 
26-June and 11-July 2005 during which the major crops of this 

of two criteria we used to evaluate the performance of different 
reconstruction techniques are compared separately (Figure 4b). 
For distance to original data SG out-performs the other two 
techniques with the highest score of 0.44. As regards proximity 
to the upper envelope SG approach gets the lowest score of 0.45 
and the technique with the highest score is AG (0.94). Although 
the pattern of proximity to the upper envelope score is same as 
the synthetic score, the largest difference up to 52% (between 
AG and SG) when take AG as reference. From these scores we 
can infer that SG is better able to retain the original data of the 
NDVI time-series, the two function fitting techniques, AG and 

Figure 4. The Synthetic Scores (a) and the Scores of Distance to Original Data and Proximity to the Upper Envelope (b).

Figure 5. MODIS NDVI Image Produced through MVC Method of Cropland in Northeast China for the Period of 26-June to 11-July 2005 Before (a) and After (b) the 
Application of AG to the NDVI Time-series.
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of three candidate reconstruction techniques are so close to 
each other that qualitative evaluation is difficult to conduct. 
The synthetic scored method presented in this study aims to 
choose a NDVI time-series reconstruction technique with the 
best performance through quantitative evaluation. Using the 
criteria simple yes or no result is given and one or zero score 
is got correspondingly to enlarge the difference of the recon-
structed NDVI time-series curves by different reconstruction 
techniques. Pixel Reliability data are used to identify whether 
a pixel has been contaminated and different criterion is applied 
depending on the result of the identification. Previous stud-
ies using similar criteria to evaluate different techniques have 
not involve the quality assessment data might give evaluation 
results less accurately.

The scores for three candidate reconstruction techniques 
showed in the results have been averaged from all sample 
points. For the distance to original data the total score of AG, 
DL and SG equals one while for the proximity to the upper 
envelope is much more than one. This is because for the dis-
tance to original data there is only one technique with lowest 
value and gets one score. But for the proximity to the upper 
envelope there are usually more than one lowest value and each 
one get one score. Also the scores of proximity to the upper 
envelope are larger than the distance to original data (see espe-
cially for AG and DL in Figure 4b) can be explained. As com-
mented in Section 3.2, the SG approach is much closer to the 
original data and better able to minimize the overall noise in 
NDVI time-series. The size of temporal window is very impor-
tant when using SG for NDVI time-series reconstruction. In 
this study a recommend value of 4 by the TIMESAT software 
is used. which should be suitable for most common condi-
tions. The AG and DL approach perform well in maintaining 
the integrity of the time-series for the purpose of phenology 
metrics detection. For most vegetation the left and right part of 
the NDVI time-series curves are not symmetrical. Asymmetric 
Gaussian function might describe this character better than 
Double Logistic function and that is why AG approach per-
forms a little better than DL.

The reconstructed NDVI image produced by AG (Figure 
5b) shows the effective modification of NDVI values contam-
inated by clouds and poor atmospheric conditions. Although 
the overall level of NDVI values is high, regions with middle 
or low level of NDVI values still exist. This case can reflect the 
difference of crop types within the cropland from which we can 
probably infer the crop structure in Northeast China. For the 
spatial pattern of onset-of-growth dates, regions with earlier 
observations might be single-season rice, which requires a rela-
tively longer growth period. It’s earlier sowing dates result in an 
earlier seedling stage so as to the onset-of-growth dates derived 
from NDVI time-series. Moreover, the spatial resolution of the 
data used in this study is 1 km, which usually involves many 
mixed pixels. The onset-of-growth dates of these pixels, for 
example with forests and crops mixed, might be influenced by 
the earlier budding dates of forests as seen by remote sensing. 
The effects of different kinds of crops and mixed pixels are 
also displayed in the spatial distribution of peak-of-growth and 
end-of-growth dates.

Validation of the derived phenology metrics has 
showed a pleasant result. The RMSEs between the remote 
sensing and ground observations for the peak-of-growth 
date (7.93) and end-of-growth date (13.71) are less than 
the MODIS NDVI composite periods of 16 days. While 
the RMSE of onset-of-growth date (18.21) is a little more 

region are growing vigorously. As such the NDVI values of 
the images should be on a high level. However, some regions 
still appear middle or low level of NDVI values in the original 
image probably due to atmospheric contamination (Figure 5a). 
Fortunately, Figure 5b shows that higher NDVI values can be 
reconstructed from contaminated data over the northeast and 
southwest of Heilongjiang province. In addition, although less 
obvious, improvement of the NDVI values can also be found 
over the west of Jilin province. Compared with the original 
NDVI image the corresponding AG reconstructed results are 
clearly more homogeneous over the regions mentioned above.

3.1.4 Spatial patterns of the detected crop phenology

Figure 6 shows the spatial distribution of the derived phenol-
ogy parameters for the year 2005 in Northeast China. Earlier 
dates of onset-of-growth appear over the east part of Sanjiang 
Plain and north part of Songnen Plain in Heilongjiang prov-
ince, predominantly from early April to early May. In compari-
son, most of the left regions have experienced onset-of-growth 
dates from middle May to early June. The spatial pattern of the 
peak-of-growth date indicates that for most areas it mainly 
occurs in early August. A few parts of north Songnen Plain and 
southeast Liaoning province have earlier peak-of-growth date 
in late July. Later peak-of-growth dates to middle August can be 
found in some parts of Sanjiang Plain, Songnen Plain, west Jilin 
province and southeast coast of Liaoning province. The end-
of-growth dates are almost concentrated to middle September, 
when the major crops of this region are in the maturity stage. 
The spatial distribution of end-of-growth dates seems to be 
more homogeneous which suggests that autumn-harvesting 
crops might be dominant in the region.

3.1.5 Validation of the derived phenology metrics

Ground observed phenology metrics are used to verify the 
accuracy of the crop phenology detection. Because the data 
from agro-meteorological stations are recorded by manual 
work, there might have certain phenology metrics lost for some 
stations. Furthermore, a lot of stations often have records for 
more than one crop types. In our study ground observations 
are collected from stations having complete records of seed-
ling emergence, heading and maturity dates for only one kind 
of crop. For the above requirements 16 stations are available. 
Scatterplot of the derived phenological metrics and ground 
observations from these stations are showed in Figure 7. The 
RMSEs between them for the onset-of-growth date, peak-
of-growth date and end-of-growth date are also calculated. 
From the figure we can see that the majority of the points lie 
around the 1:1 line within the interval of ± 16 days. The RMSE 
between the derived phenological metrics and ground obser-
vations for the onset-of-growth date, peak-of-growth date and 
end-of-growth date is 18.21, 7.93 and 13.71 days, respectively. 
These results indicate that the accuracy of the detected crop-
land phenology metrics is pleasant and the errors are within 
a reasonable limit.

3.2 Discussion

Comparison of the AG, DL and SG approaches with the orig-
inal data for major crop types were made using data from 
pixels where agro-meteorological stations with only one kind 
of crop located. The reconstructed NDVI time-series curves 
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onset-of-growth and end-of-growth. Sometimes a different 
value needs to be given for the end-of-growth date, because 
it is more influenced by human activities rather than natural 
factors. Moreover, NDVI time-series data from MODIS with 
coarse temporal and spatial resolution (16 days and 1 km) are 
used in this study. Datasets from other satellite sensors with 
relatively higher temporal and spatial resolution are encour-
aged to use for further studies.
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than 16  days. For our analysis we use composite data 
in which NDVI values are assigned to multiday periods 
rather than the specific date of image capture. The com-
posite NDVI data is nominally temporal equidistant, in 
fact the NDVI values can be acquired on any day of the 
composite period. The actual temporal distance between 
adjacent NDVI values vary from 1 to 32 days, depending 
on the dates of acquisition of the data. Such an uncer-
tainty in the temporal location of the NDVI values is 
much greater than the variations of phenology parame-
ters. In addition, erroneous NDVI value positions affect 
the shape of the reconstructed time-series curve. Due 
to the loss of precision phenology metrics might be less 
precisely comparable with ground observations.

4. Conclusion and Future Work

Residual noise due to poor atmospheric conditions and other 
factors in the NDVI time-series has prevented the further 
application of the data. There is a strong need for the recon-
struction of NDVI time-series before using them. An appro-
priate reconstruction technique can restore the ‘true’ NDVI 
time-series as much as possible. However, there are so many 
kinds of reconstruction techniques that we usually don’t know 
which one should be chosen.

This study has presented a synthetic scored method for eval-
uating performances of different NDVI time-series reconstruc-
tion techniques in order to choose the optimal one for crop 
phenology detection. Three widely used techniques provided 
by the TIMESAT software package including Asymmetric 
Gaussian function fitting (AG), Double Logistic function fitting 
(DL) and Savitzky-Golay filtering (SG) are compared based on 
MODIS NDVI time-series. The results show that AG approach 
has got the highest score which means it outperform the two 
other techniques. The cropland NDVI values contaminated 
by unfavorable atmospheric conditions in the study area have 
been improved obviously after the reconstruction through AG. 
Spatial patterns of the cropland phenology metrics based on 
the reconstructed NDVI time-series produced by AG are rea-
sonable. The errors of the detected crop phenology metrics are 
within an acceptable limit.

There are also some limitations in this study for improve-
ment by future work. We have only evaluated three NDVI 
time-series reconstruction techniques over a regional scale of 
Northeast China. In the future work we should involve more 
techniques and compare them over a larger scale. For the detec-
tion of crop phenology a 20% threshold is used both for the 

Figure 7. Scatterplot of the Derived Phenology Metrics and Ground Observations. 
The Solid Line is 1:1 Line and the Dashed Lines Show the Interval of ± 16 Days 
Which Equals the Composite Period of the MODIS NDVI Data We Used.
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