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Abstract: Soil water content (SWC) is a crucial variable in the thermal infrared research 

and is the major control for land surface hydrological processes at the watershed scale. 

Estimating the surface SWC from remotely sensed data using the triangle method proposed 

by Price has been demonstrated in previous studies. In this study, a new soil moisture index 

(Temperature Rising Rate Vegetation Dryness Index—TRRVDI) is proposed based on a 

triangle constructed using the mid-morning land surface temperature (LST) rising rate and 

the vegetation index to estimate the regional SWC. The temperature at the dry edge of the 

triangle is determined by the surface energy balance principle. The temperature at  

the wet edge is assumed to be equal to the air temperature. The mid-morning land  

surface temperature rising rate is calculated using Meteosat Second Generation—Spinning 
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Enhanced Visible and Infrared Imager (MSG-SEVIRI) LST products over 4 cloud-free 

days (day of year: 206, 211, 212, 242) in 2007. The developed TRRVDI is validated by  

in situ measurements from 19 meteorological stations in Spain. The results indicate that the 

coefficient of determination (R
2
) between the TRRVDI derived using the theoretical 

limiting edges and the in situ SWC measurements is greater than that derived using the 

observed limiting edges. The R
2
 values are 0.46 and 0.32; respectively (p < 0.05). 

Additionally, the TRRVDI is much better than the soil moisture index that was developed 

using one-time LST and fractional vegetation cover (FVC) with the theoretically determined 

limiting edges. 

Keywords: thermal infrared; soil water content; triangle method; TRRVDI; temperature 

rising rate 

 

1. Introduction 

Soil water content (SWC) is an important parameter in the study of hydrology, meteorology, 

agriculture management and global climate change [1–9]. It influences energy partitioning between 

sensible and latent heat fluxes, and the exchange of water and energy fluxes between the land surface 

and the atmosphere [9]. Additionally, the SWC is an indispensable variable in many hydrological and 

atmospheric processes. 

The conventional method (such as the gravimetric method) is accurate but is destructive and time 

consuming to acquire [9]. Although the SWC can be estimated by Time Domain Reflectometry (TDR) 

or with the neutron attenuation method, these methods are in essence point based. Local scale 

variations in soil properties, terrain and vegetation cover make it difficult to select representative field 

sites [10]. Field methods are complex, labor-intensive and expensive. Remote sensing methods, 

however, can monitor a larger region and obtain images at short time intervals. For example, the 

geostationary meteorological satellites can provide 96 temporal series data in one day. Due to the 

advantages of remote sensing, many authors have tried to estimate the SWC estimation using this 

technique [11–14]. Optical remote sensing applies the reflectance (s) of different bands to obtain the 

SWC for different soils [15–17]. Thermal remote sensing uses soil thermal properties to study the soil 

moisture using methods such as the thermal inertia method or the triangle method [18–23]. Microwave 

remote sensing estimates the SWC using a passive radiometer or the relationship between the SWC 

and the backscattering coefficients from radar [24–28]. 

The surface temperature-vegetation index/fractional vegetation cover triangle method, which is easy 

to operate and requires less ground auxiliary data, is widely used in the SWC and evapotranspiration 

(ET) research [6,29–35]. Land surface temperature reflects the complicated effects of the soil 

properties and the incoming and outgoing energies. The vegetation index shows the complex 

conditions of the underlying surface. Many previous studies [36–38] utilize these two variables to 

study the SWC inversion through different remotely sensed data sources. The triangular space 

constructed by the LST and the vegetation index has been proven to be useful to monitor the SWC  

at a regional scale [9,39]. According to previous studies, land surface temperature and vegetation 
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index/fractional vegetation cover show a strongly negative relationship. The slope of the relationship is 

related to the sensible heat flux, evapotranspiration and the surface SWC. Additionally, the triangular 

space has also been used to estimate the crop temperature or air temperature, etc. [39]. 

The surface temperature-vegetation index triangle method assumes that there is a wide change of 

both land use cover from bare soil to the full vegetation cover and surface SWC from dry to wet 

conditions. One major limitation of the triangle method is the determination of the dry edge from the 

constructed space [32]. The dry edge in the triangular space indicates that the vegetation is subject to 

water stress, evapotranspiration reaches the minimum and the SWC is 0, meaning that no water can be 

used. Different approaches have been developed to reduce the errors from data resources and limiting 

edge extractions. The instantaneous land surface temperature and vegetation index are used to 

construct the triangular space [40–45]. The limiting edges are determined through the empirical fitting 

or from the physical equations. The surface SWC estimation results can be seriously affected by the 

error induced by the instantaneous land surface temperature retrievals, Land surface temperatures from 

different times are applied in the triangle method, and the soil moisture index is proposed. Determining 

the limiting edge of these methods, however, is all based on the observed scatter in the space without a 

physical basis [29,46]. A combination of the land surface temperature variations with the physical 

limiting edge determination method is therefore required. In this study, the land surface temperature 

time series variation is used to reduce the error induced by the instantaneously obtained values. The 

theoretical limiting edges are determined by the energy balance model with a robust physical basis to 

avoid the uncertainty caused by the observed limiting edges. The new soil moisture index, TRRVDI, is 

then proposed based on the land surface temperature time series variations and vegetation index with 

the theoretical limiting edge determination and is used to estimate the SWC in the study area. 

The objectives of this research are as follows: (1) to develop a new soil moisture index based on the 

temporal variation of land surface temperatures in the mid-morning on a clear sky day; and (2) to 

validate the index using the in situ volumetric soil moisture content measurements and compare it to 

two other soil moisture indices. In Section 2, the TRRVDI is developed using the space that 

constructed by the land surface temperature mid-morning rising rate and the fractional vegetation 

cover. The limiting edges are determined by the energy balance model. MSG SEVIRI data, in situ 

measurements and the study area are described in Section 3. Section 4 illustrates the comparisons with 

the in situ measurements. The conclusions are presented in Section 5. 

2. Method 

2.1. Definition of the Temperature Rising Rate Vegetation Dryness Index (TRRVDI) 

In the triangular or trapezoidal space, the theoretical dry edge is characterized by zero 

evapotranspiration and water unavailability. The theoretical wet edge represents the surface over which 

there is enough water to allow evaporation to occur under unrestricted conditions and the vegetation is 

not stressed by the SWC. Because of the uptake water from the root zone by plants, the observed dry 

edge may not represent the real water-limiting conditions [9]. According to Sandholt [34], the land 

surface temperature (Ts) decreases with increasing surface SWC under a given vegetation cover and 

environmental conditions. In the triangle space, the pixel values are projected onto a two-dimensional 
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scatterplot represented by Ts on the y-axis and the vegetation index (VI) on the x-axis; and the 

variation in soil moisture is represented by the slope of the relationship between Ts and the VI. The 

soil water isopleths in the space are assumed to be linear lines from the maximum vegetation cover to 

the bare soil, and the soil water decreases linearly with the increase of Ts. The soil moisture index is 

defined as the ratio of the temperature of the intermediate pixel minus the minimum temperature to the 

maximum temperature minus the minimum temperature for a given vegetation index [34]. The 

maximum temperature is assumed to linearly relate to the vegetation coverage at the dry edge. 

Because of the error induced by the instantaneous temperature obtained via remote sensing, many 

studies use the temperature difference to estimate the SWC. Moran [39] used the difference between 

the land surface temperature and the air temperature to study crop water deficit conditions. Using the 

difference between the maximum and minimum land surface temperatures, Stisen et al. [29] proposed 

that the land surface temperature difference in one day can be used to estimate the SWC. Polar-orbiting 

satellites, however, can only provide three or four images of a given site on a daily basis. When the 

weather is rainy or cloudy, the data are not available. Geostationary meteorological satellites are useful 

because they can provide data every 15 minutes. MSG data are widely used in soil water content and 

ET monitoring studies [29,47,48]. 

The mid-morning land surface temperature increases linearly on a sunny day [46]. The land surface 

temperature rising rate is related to the SWC on the sunny day. The temperature rising rate-vegetation 

index triangular or trapezoidal space is defined and shown in Figure 1. The vertical axis represents the 

mid-morning land surface temperature rising rate, and the horizontal axis represents the fractional 

vegetation cover. The theoretical dry edge indicates that the TRRVDI reaches its maximum value and is 

equal to 1. The theoretical wet edge indicates that the SWC is sufficient and that the TRRVDI is equal to 

0. The assumptions are that the land surface temperature rising rate is lineally related to the fractional 

vegetation cover and that the soil water availability varies linearly from the dry edge to the wet edge. 

Figure 1. An illustration of the Temperature Rising Rate Vegetation Dryness Index 

(TRRVDI). RT is the rate of land surface temperature in the mid-morning. RTsd and RTvd are 

the driest points for bare soil and full vegetation, respectively. RTsw and RTvw are the wettest 

points for bare soil and full vegetation, respectively. The red dotted line is the observed dry 

edge and the upper blue solid line is the theoretical dry edge derived from the energy balance 

equation. For a given pixel (C), CB and AB are used to calculate the TRRVDI. 
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The soil moisture index TRRVDI is defined as: 

 
(1) 

where RT(i) is the mid-morning rising rate of the surface temperature for a pixel i, which is obtained by 

the temperature difference at 8:30 AM and 11:30 AM divided by the time difference. RTwet is the 

minimum RT in the triangle that defines the wet edge, and RTdry is the maximum RT at the dry edge. 

Figure 1 shows that the theoretical limiting edges are different from the observed edges. Numerous 

methods are developed from different starting points. Moran [39] determined the dry edge from the 

theoretical boundary lines of the difference between the land surface temperature and air temperature. 

Sandhlot [34] used the observed dry edge from the scatter plot derived from the remotely sensed data 

directly. Tang et al. [35,49] developed the dry edge auto-determined method from the scatterplots, and 

this method has been widely used to estimate the evapotranspiration. Zhang proposed a theoretical 

method to determine the dry edge using the energy balance equation for evapotranspiration [50,51]. 

His method demonstrated that the theoretical boundary line is different from the observed one. The 

observed dry edge is generally not the soil moisture content associated with the wilting point of the soil 

or evapotranspiration that is equal to 0, which means that the observed dry edge is not the true dry 

edge. The dry edge represents a condition in which no water is available to evaporate and the SWC is 

zero. The land surface is at its driest condition when the land surface temperature reaches its maximum 

value, which is associated with stomatal closure in the vegetated area. In particular, the stomata close 

completely for the vegetated area. Similarly, the wet edge is represented by the minimum land surface 

temperature associated with a non-restricting SWC [52]. In general, the observed dry edge from the 

scatterplot of remote sensing data is not the theoretical dry edge. The vegetated area does not typically 

reach the driest condition because the plants can continue to obtain water from deeper in the root zone. 

In this paper, the theoretical limiting edges are determined using the method discussed by Zhang [51]. 

2.2. The Theoretical Dry Edge Determination 

The land surface energy balance equation is 

 (2) 

where Rn is the surface net radiation, LE is the latent heat flux, G is the soil heat flux and H is the 

sensible heat flux. Rn can be expressed as 

 (3) 

where S0 is the solar radiation reaching the Earth’s surface, á is the albedo, ó is Stefan-Boltzmann 

constant. Tsa is the average sky temperature and Ts is the land surface temperature. åa is the 

atmospheric emissivity, which can be obtained by [51] 

 
(4) 

where ea is the water vapor pressure at a reference height and ås is the emissivity of the land surface, 

which can be given by [53]. 
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 (5) 

where åv and åss are the emissivity for vegetation (0.97) and soil (0.95) respectively [53], and Fv is the 

fractional vegetation cover. The soil heat flux can be estimated using [51] 

 (6) 

where Ãs and Ãv are the ratios of G and Rn for bare soil and a fully covered vegetation surface, 

respectively. The value of Ãv is 0.05, and the value of Ãs is 0.315. The vegetation cover is equal 0 for 

the dry bare soil. 

When the soil reaches extreme dry conditions, there is no LE. The energy balance equation, 

therefore, can be shown as 

 (7) 

The sensible heat flux can be calculated by the following aerodynamic equation [54] 

 
(8) 

where ñ is the density of air and Cp is the heat capacity of air at a constant pressure. Ta is the air 

temperature and ra is the aerodynamic resistance. 

Combining the above equations, Tsd and Tvd [51] are determined by 

 (9) 

 (10) 

where the subscripts sd and vd denote the bare soil and full vegetation cover, respectively. The other 

parameters were previously explained. If the parameters αsd, αvd, Tsky, rsda, rvda, Tsda and Tvda are 

acquired, Tsd or Tvd can be iteratively calculated. 

3. Study Area and Data 

3.1. Study Area 

Considering the requirement of clear sky conditions, the central part of Spain was selected as the 

study area (238 pixels times 350 pixels with a spatial resolution of 3 km, as shown in Figure 2). The 

elevation in most of this region is greater than 450 m. For this study, regions with an elevation between 

450 and 900 m were selected to minimize the effect of elevation changes on the surface temperature 

change. The main land cover type in this region is closed shrub lands and croplands. 
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Figure 2. DEM and experiment stations in the study area. 

 

3.2. Data 

3.2.1. MSG SEVIRI Data 

As for satellite data, MSG-SEVIRI data is selected. The SEVIRI onboard the Meteosat Second 

Generation (MSG) satellite is a new type of geostationary sensor and includes a red and a near-infrared 

channel and two thermal infrared split window channels with 15-min acquisition intervals (Table 1). 

Its high temporal resolution and capability to provide 96 data in one day are advantageous, but its low 

spatial resolution of 4.8 km at nadir and large view angles are disadvantages. In this study, SEVIRI 

LST and fraction vegetation cover data downloaded from the Land Surface Analysis Satellite 

Applications Facility were used to derive the LST mid-morning rising rates and construct the feature 

space [55]. 

3.2.2. In situ Measurements 

REMEDHUS is an important part of the International Soil Moisture Network [56] and has been 

used to validate several satellite products. REMEDHUS is composed of 20 soil moisture monitoring 

stations located in the Duero basin of Spain. The stations continuously measure the soil moisture at 

depths of 0-5 cm using Hydra probes (Stevens
®
 Water Monitoring System, Inc., Oregon, USA). There 

are four automatic weather stations and several other sensors and equipment for hydrological 

monitoring. These stations are located within an area of 1300 km
2
 (41.1° to 41.5°N; 5.1° to 5.7°W) in a 

central semiarid sector of the Duero basin that is nearly flat (less than 10% slope), with the elevation 

ranging from 700 to 900 m above sea level. It is a continental semiarid Mediterranean climate that has 

an average annual precipitation of 385 mm and a mean temperature of 12 °C. The land use is mainly 

agricultural, with rain-fed cereals grown in winter and spring (78%), irrigated crops in summer (5%), 

and vineyards (3%). There are also patchy areas of forest and pasture (13%). The growing cycle for 

rainfed cereals consists of the seeding period in autumn, development in spring and 

ripening/harvesting in early summer. The stations contain different soil types such as silty loam, loamy 
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sand and loam. The stations collect instantaneous (averaged over a 1-hour interval) in situ volumetric 

SWC at 5 cm depth concurrent with the satellite overpass times, as shown in Table 2. 

Table 1. Spectral channel characteristics of MSG-SEVIRI [57]  

Channel 

No. 

Channel 

Name 

Characteristics of Spectral 

Channel (μm) 
Short-Term Radiometric 

Error Performances 

Main Gaseous Absorber 

or Window 
λcentral λmin λmax 

1 VIS0.6 0.635 0.56 0.71 0.27 at 5.3 W/(m
2
 sr μm) Window 

2 VIS0.8 0.81 0.74 0.88 0.21 at 3.6 W/(m
2
 sr μm) window 

3 NIR1.6 1.64 1.50 1.78 0.07 at 0.75 W/(m
2
 sr μm) window 

4 IR3.9 3.9 3.48 4.36 0.17 K at 300 K Window 

5 WV6.2 6.25 5.35 7.15 0.21 K at 250 K Water vapor 

6 WV7.3 7.35 6.85 7.85 0.12 K at 250 K Water vapor 

7 IR8.7 8.7 8.3 9.1 0.10 K at 300 K Window 

8 IR9.7 9.66 9.38 9.94 0.29 K at 255 K Ozone 

9 IR10.8 10.8 9.80 11.80 0.11 K at 300 K Window 

10 IR12.00 12.00 11.00 13.00 0.15 K at 300 K Window 

11 IR13.4 13.4 12.40 14.40 0.15 K at 300 K Carbon dioxide 

12 HRV 
Broad channel  

(0.4–1.1 μm) 
0.63 at 1.3 W/(m

2
 sr μm) Window/Water vapor 

Table 2. Locations of the experiment stations and in situ volumetric soil moisture content 

at 19 stations concurrent with the satellite overpasses (day of year: 206, 211, 212 and 242) 

involved in this study. 

Station Latitude Longitude 
In situ Volumetric Soil Moisture Content (m

3
/m

3
) at 5 cm Depth 

206 211 212 242 

Canizal 41.19720°N 5.35861°W 0.24 0.21 0.24 0.19 

Carramedina 41.31359°N 5.16005°W 0.30 0.23 0.22 0.31 

Carretoro 41.26611°N 5.37972°W 0.28 0.10 0.29 0.25 

CasaPeriles 41.39508°N 5.32010°W 0.29 0.19 0.30 0.13 

ConcejodelMonte 41.30126°N 5.24569°W 0.21 0.15 0.14 0.27 

ElCoto 41.38251°N 5.42786°W 0.33 0.19 0.34 0.25 

Granja_g 41.30690°N 5.35925°W 0.21 0.12 0.25 0.27 

Guarena 41.20170°N 5.27085°W 0.13 0.15 0.12 0.15 

Guarrati 41.29050°N 5.43402°W 0.15 0.14 0.14 0.18 

LaAtalaya 41.15011°N 5.39621°W 0.29 0.30 0.15 0.22 

LaCruzdeElias 41.28662°N 5.29868°W 0.11 0.11 0.11 0.18 

LasArenas 41.37455°N 5.54714°W 0.10 0.16 0.10 0.19 

LasBodegas 41.18381°N 5.47572°W 0.14 0.22 0.11 0.17 

LasBrozas 41.44765°N 5.35734°W 0.12 0.16 0.33 0.11 

LasVacas 41.34778°N 5.22361°W 0.17 0.27 0.32 0.23 

LasVictorias 41.42529°N 5.37267°W 0.27 0.18 0.28 0.14 

LlanosdelaBoveda 41.35873°N 5.32977°W 0.14 0.19 0.10 0.18 

Paredinas 41.45703°N 5.40964°W 0.31 0.24 0.31 0.22 

Zamarron 41.24040°N 5.54291°W 0.28 0.29 0.12 0.20 
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4. Results and Discussion 

4.1. Theoretical Dry Edge Determination and TRRVDI Results 

4.1.1. The space of RT—Fractional Vegetation Cover (FVC) 

The mid-morning temperature rising rate was calculated using MSG-SEVIRI LST for 4 cloud-free 

days (day of year (DOY): 206, 211, 212, 242) in 2007. The temperature rising rate—FVC space is 

plotted in Figure 3. A trapezoidal space can be observed from the temperature rising rate—FVC scatter. 

The temperature rate decreases when the vegetation cover increases. The temperature rising rate—FVC 

space changes from one value to another because of the variation of surface soil moisture content. 

We can see that most of the rising rate of temperatures (RTs) changes from 2.0 to 8.0 K/h. When 

the soil is at its driest, the RT reaches its maximum of approximately 8.0 K/h, while the RT is 

approximately 4.0 K/h with a full vegetation cover. The spatial variation of RTs in the space is because 

that the leaf temperature of vegetation increased more slowly than did the bare soil at the same time 

interval. Assuming constant atmospheric conditions for a given day, the soil water content is the main 

factor in determining the RT changes. The RT changed largely on different days because the soil water 

content and atmospheric force varied greatly. 

4.1.2. The Theoretical Dry Edge Determination 

Using the theories of Zhang et al. and Long et al. [51,52], the theoretical limiting edges of four 

images were determined (Figure 3). When the dry edge was calculated, the meteorological data from 

REMEDHUS were used. The air temperature, wind speed and downward longwave radiation were 

obtained from the station to calculate the RT at 8:30 and 11:30 AM. The dry points for bare soil and 

full vegetation cover were acquired physically to construct the theoretical dry edge. Based on the 

assumption that the temperature of the full vegetation cover was equal to the ambient air temperature, 

the theoretical wet edge was determined from the air temperature. 

The theoretical dry edges on the four days are listed in Table 3 (X represents FVC and Y represents 

RT). The intercepts of the theoretical dry edges are larger, and the slope is smaller than the observed 

dry edges. The intercept of the dry edge shows the feasible maximum RT for one day, and the slope 

represents the soil moisture variation rate with fractional vegetation cover. It is shown that the 

observed dry edge fits well with the scatters, but the observed wet edge cannot fit well because of 

many outliers (pixels contaminated by cloud or located at a water body) in Figure 3. The theoretical 

limiting edges are close to the real conditions because many underlying surface measured data were 

used to derive them. 

4.2. Comparisons 

To validate the TRRVDI, three soil moisture indices were used to compare to the in situ SWC  

at 19 stations. The first one was derived from the instantaneous land surface temperature and 

vegetation index with the theoretical limiting edges determination (ITVX) [34]. The second one was 

calculated from the land surface temperature rising rate and vegetation index with the observed 
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limiting edges from the scatterplots (TDX) [46]. The third one was the TRRVDI. The soil moisture 

indices ITVX and TDX are calculated as follows: 

 
(11) 

 
(12) 

where LSTmin and LSTmax are the minimum and maximum land surface temperature derived from the 

theoretical limiting edges, respectively. LSTi is the instantaneous land surface temperature for a 

specific pixel. TDmin and TDmax are the minimum and maximum mid-morning land surface temperature 

difference derived from the observed limiting edges, respectively, and TDi is the mid-morning land 

surface temperature difference for a specific pixel. 

Figure 3. The theoretical limiting edges determined from the energy balance equation and 

the observed dry and wet edges determined using the method proposed by Tang et al. [49] 

on 4 clear-sky images (day of year: 206, 211, 212 and 242). 

 

 

4.2.1. Comparison between the Theoretical and Observed Limiting Edges 

Applying the method proposed by Tang et al. [49], the limiting edges determined by the regression 

of the scatter plot from the remotely sensed data are shown in Figure 3 (the blue line). The method 

used the spatial distribution of the scatters. The FVC is first divided into several small intervals, and 

the maximum land surface temperature in each interval is identified. The maximum pixels are then 

regressed as a line as the observed dry edge. The derivation of the wet edge is similar to that of the dry 

edge. The value of the observed dry edge is smaller than that of the theoretical one. The main reason 
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for this difference is that zero evaporation rarely occurs, as plants are able to extract water deeper in 

the root zone. Because of the weather effect on the soil moisture, the observed limiting edges are not 

the real extreme conditions of the land surface. 

Table 3. Comparison of the theoretical and observed values for the dry edges for four 

sunny days in Figure 3 (X and Y represent the fractional vegetation cover and RT, 

respectively). 

Day of Year Theoretical Dry Edge Observed Dry Edge 

206   

211   

212   

242   

Figure 4. Comparison between the Temperature Rising Rate Vegetation Dryness Index 

(TRRVDI) and the soil moisture index derived from the land surface temperature rising 

rate and vegetation index with the observed limiting edges from the scatterplots (TDX).  

p value represents the statistical confidence level. The Relative Bias is calculated by the 

arithmetic mean of the difference of the two indices divided by the sample numbers. 

  

  

The soil moisture index derived from the theoretical limiting edges is smaller than the TDX, and the 

relationship between them is shown in Figure 4. The coefficients of determination between them are 

very high, demonstrating that the two soil indices are highly related. The coefficient of determination 

(R
2
) can be greater than 0.86 (p < 0.05) and can even be as high as 0.99 (p < 0.05). Zhao [46] noted 

that the TDX is validated using the AMSR-E soil moisture products and API. The results demonstrated 
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         July 26
  y = 0.88x + 0.22

R2 = 0.96  p < 0.05
Relative Bias = 0.46%
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        July 30
  y = 0.88x + 0.24

R2 = 0.86  p < 0.05
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        July 31
  y = 1.04x + 0.21

R2 = 0.99  p < 0.05
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  y = 1.26x + 0.02
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 = 0.98  p < 0.05

Relative Bias = 5.69%
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that TDX can be used to monitor soil moisture variation and that it is suitable for monitoring the 

regional surface soil moisture and temporal variation [46]. The TRRVDI can therefore reflect drought 

conditions to a certain extent. 

4.2.2. Comparison with in situ Measurements 

Through the comparison of three soil moisture indices with the in situ SWC (Figure 5), the average 

R
2
 of TRRVDI with in situ SWC can reach 0.46 (p < 0.05), and the other two are 0.32 (p < 0.05) and 

0.36 (p < 0.05), respectively [58] (as shown in Table 4). The results show that TRRVDI is better than 

the other two indices at monitoring the soil water conditions. The coefficients varied over different 

days because of changing atmospheric conditions and the heterogeneity of the land surface. On DOY 

211 and DOY 242, the TRRVDI was much better than the other two indices. The correlation coefficients 

demonstrated that the TRRVDI had a close relationship with the soil drought conditions. Based on the 

values of three soil moisture indexes, the TRRVDI was more indicative of the true land surface 

conditions. The TDX overestimated the SWC, which were different from the true drought conditions. 

Figure 5. Comparison of the three different soil moisture indices with the in situ 

measurements soil water contents. The TDX represents the soil moisture index derived 

from the land surface temperature differences—vegetation index triangular space with the 

observed limiting edges; The ITVX shows the soil moisture index that derived from the 

instantaneous land surface temperature—vegetation index triangular space with the 

theoretical limiting edges. The TRRVDI is the soil moisture index proposed in this paper. 
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Table 4. Comparison of the three soil moisture indices with the in situ measurements soil 

water content for 4 sunny days (x and y represent the in situ volumetric soil water content 

and the soil moisture index, respectively). The TRRVDI is the Temperature Rising Rate 

Vegetation Dryness Index proposed in this paper, TDX is the soil moisture index derived 

from the land surface temperature rising rate and vegetation index with the observed 

limiting edges from the scatterplots and ITVX is the soil moisture index derived from the 

instantaneous land surface temperature and vegetation index with the theoretical limiting 

edges determination. 

Moisture 

Indexes 

Day of Year  
R

2
 

Relative 

Error 206 211 212 242 

TRRVDI y = −1.25x + 0.58 y = −1.54x + 0.59 y = −0.67x + 0.41 y = −0.92x + 0.50 0.46 4% 

TDX y = −1.37x + 0.88 y = −1.38x + 0.84 y = −0.62x + 0.53 y = −0.60x + 0.46 0.32 11% 

ITVX y = −1.56x + 1.64 y = −1.52x + 0.67 y = −0.75x + 0.82 y = −0.80x + 0.72 0.36 9% 

4.3. Discussions 

Compared with the soil moisture index derived from the observed limiting edges, the R
2
 between 

the TRRVDI with the theoretical limiting edges is slightly improved, but it is still low, especially on 

DOY 206 and DOY 212. There are many reasons for the error, such as a scale mismatch, theoretical 

dry edge determination limitations or input data errors. 

The validation data are obtained from meteorological stations that only represent the limited space 

around the stations or several meters away from the stations. However, the remote sensing pixel has an 

approximately ~3 kilometer spatial coverage of the land surface. A pixel is the complex information of 

the underlying surface that contains many land covers. Errors are induced by using point data to 

validate the estimated results. The spatial variation can’t be precisely conveyed through the point  

data validation. 

Monitoring soil moisture based on the space of Ts–FVC assumes that the meteorological parameters 

and land surface attributes are homogeneous, which simplifies the relationship between soil moisture 

and land surface temperatures [53]. In the study area, the land cover is not from bare soil to full 

vegetation cover. Additionally, in determining the theoretical dry edge, many assumptions can induce 

uncertainties. Among them, the aerodynamic resistance affects the results through the theoretical  

dry point for bare soil and full vegetation cover. The theoretical wet edge is determined by the air 

temperature, which can overestimate the true temperature of the wet edge. The results can be improved 

if the surface temperature of a water body is chosen as the theoretical wet edge. 

In addition, the meteorological data used to obtain the theoretical dry edge may not represent the 

conditions corresponding to the maximum land surface temperature for bare soil or full vegetation 

cover. Determining the theoretical dry edge, however, is based on the observed values. If the observed 

dry conditions are not close to the real surface dry conditions, errors can be introduced. 

5. Conclusions 

Surface soil water content is of great importance in closing hydrologic budgets, assessing soil plant 

water interactions and studying climate change. This study developed a new soil water content index 



Remote Sens. 2014, 6 3183 

 

 

using land surface temperature time series data to monitor the soil moisture conditions in combination 

with the Meteosat Second Generation—Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) 

data. The mid-morning land surface temperature rising rate and vegetation cover were constructed to 

take on a trapezoidal space. The theoretical limiting edge determination method of Zhang [51] was 

used to derive the limiting edges. The greatest advantage of Temperature Rising Rate Vegetation 

Dryness Index (TRRVDI) is that it substitutes the temporal variation of land surface temperature 

(LST) for the instantaneous LST, which may reduce uncertainties in estimating the soil moisture. 

Additionally, based on the energy balance model, the determined TRRVDI has a robust physical basis 

and assumes that the soil water content changes linearly with the land surface temperature rising rate 

from bare soil to the full vegetation cover. The limitation is that the theoretical dry edge determination 

still needs auxiliary measured data. The basic conclusions are as follows: 

(1) The TRRVDI is obtained using the temporal variation of LST rather than the instantaneous LST 

and the vegetation cover with the theoretical dry edge determination. The proposed soil moisture is 

more robust than those determined by the observed limiting edges. Many atmospheric parameters are 

incorporated into the energy balance equation to strengthen the accuracy of calculating the maximum 

dry point in the scatters. 

(2) Compared with the in situ measurements, the TRRVDI is more robust than the two other soil 

moisture indices. The average R
2
 of the TRRVDI (0.46, p < 0.05) is greater than that of the other two 

indices (0.32 and 0.36, p < 0.05). Additionally, the relative error of TRRVDI (4%) is lower than that of 

the other two indices (11% and 9%). The results demonstrated that the proposed soil moisture index is 

better than the other two indices for monitoring regional drought conditions. 

We acknowledge that the soil moisture monitored in the upper 5 cm or less is of limited use for 

hydrologic and agricultural applications, which is primarily constrained by remote sensing. The 

greatest advantage of remote sensing is its ability to spatially continuously monitor large areas, which 

cannot occur with a limited number of ground-based stations. If the vertical soil moisture profile can 

be known a priori, one can extrapolate the remote sensing based soil moisture in the upper soil to the 

deep layer. Difficulties in applying the TRRVDI include the need for many ground auxiliary data and 

the complicated calculation processes. The index also requires different atmospheric forcing data to 

obtain the dry edge for different days. The energy closure and the complexity of the land surface lead 

to great uncertainties. To accurately monitor soil water conditions, further validations are required to 

assess the validity and utility of the TRRVDI. 
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