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Leaf area index (LAI) is a key variable for modeling energy and mass exchange between the land surface
and the atmosphere. Inversion of physically based radiative transfer models is the most established
technique for estimating LAI from remotely sensed data. This study aims to evaluate the suitability of
the PROSAIL model for LAI estimation of three typical row crops (maize, potato, and sunflower) from

KeJ’WWdS{ unmanned aerial vehicle (UAV) hyperspectral data. LAl was estimated using a look-up table (LUT) based
l';;g;;ff index on the inversion of the PROSAIL model. The estimated LAl was evaluated against in situ LAl measurements.
Hyperspectral The results indicated that the LUT-based inversion of the PROSAIL model was suitable for LAI estimation

of these three crops, with a root mean square error (RMSE) of approximately 0.62 m? m~2, and a relative
RMSE (RRMSE) of approximately 15.5%. Dual-angle observations were also used to estimate LAI and
proved to be more accurate than single-angle observations, with an RMSE of approximately 0.55 m? m—2
and an RRMSE of approximately 13.6%. The results demonstrate that additional directional information

Look-up table
Dual-angle observations

improves the performance of LAI estimation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Leaf areaindex (LAI), defined as the total one-sided area of leaves
per unit of ground area (Bréda, 2003), is a key parameter in a wide
range of biological and physical processes (Gower et al., 1999; Li
et al., 2009; Myneni et al., 2002). For instance, the monitoring and
mapping of LAl is vital for modeling energy and mass exchange
between the land surface and the atmosphere (Asner et al., 2003;
Running et al., 1999; Li et al., 2009). Remote sensing provides a
cost-effective method to estimate LAl over extended regions. There
are two main approaches for estimating LAI from remotely sensed
data: statistical and physical approaches (Baret and Buis, 2008;
Dorigo et al., 2007; Kimes et al., 2000). The statistical approaches
are based on empirical relationships between ground-based LAI
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measurements and spectral vegetation indices (Darvishzadeh etal.,
2008a; Haboudane et al., 2004). The physical approaches are based
on radiative transfer model (RTM) inversion (Combal et al., 2002a;
Meroni et al., 2004). The inversion of RTMs has been integrated
multi-angular sensors (Dorigo, 2012; Meroni et al., 2004; Vuolo
et al., 2008).

Three different techniques are commonly used for the inver-
sion of RTMs: iterative optimization techniques (Jacquemoud et al.,
1995; Meroni et al., 2004; Vohland et al., 2010), look-up tables
(LUTs) (Darvishzadeh et al., 2012; Dorigo, 2012; Richter et al.,
2011), and neural networks (NNs) (Atzberger, 2004; Bacour et al.,
2006; Baret et al., 2007). Several studies have found that LUTs
and NNs delivered the best accuracy and speed in the inversion
of RTMs (Richter et al., 2009; Weiss et al., 2000). The inversion
of RTMs is, by nature, an ill-posed problem for two main reasons
(Atzberger, 2004; Combal et al., 2002a). One reason is that various
combinations of canopy biophysical variables may produce simi-
lar canopy reflectance spectra. The other is that measurement and
model uncertainties may induce large inaccuracy in the simulated
reflectance spectra.
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Different strategies have been proposed to solve the ill-posed
inverse problem (Li et al., 2013a, 2013b). For LUT-based inver-
sion methods, the use of multiple solutions (rather than the single
best solution) modestly increases the robustness of LAl estimation
(Darvishzadeh et al., 2011; Weiss et al., 2000). The exploitation of
a priori knowledge, e.g., on the ranges and distributions of vari-
ables (Darvishzadeh et al., 2008b; Si et al., 2012) and on land cover
classification (Dorigo et al., 2009; Verrelst et al., 2012), is another
way to constrain solutions to the ill-posed problem and to improve
the accuracy of LAI estimation. Moreover, the use of multi-angle
observations has also been shown to improve the accuracy of LAI
estimation (Dorigo, 2012; Meroni et al., 2004; Vuolo et al., 2008).

Because of its ease of use and general robustness, the PROSAIL
model has been used to estimate LAl over fields of agricultural crops
such as sugar beet (Combal et al., 2002b; Jacquemoud et al., 1995),
maize (Koetz et al., 2005; Yang et al., 2012), and alfalfa (Bacour
et al.,, 2002; Vuolo et al., 2008). However, relatively few investiga-
tions have been performed over potato and sunflower fields. The
objective of this study is twofold: (i) to further evaluate the suit-
ability of the PROSAIL model for LAI estimation of maize, potato,
and sunflower fields in northern China using the LUT approach;
and (ii) to compare the performance of LAl estimation from single-
and dual-angle observations against in situ measurements. This
paper is organized as follows. The study area, data, and methods are
described in Section 2. The results are presented in Section 3 and
discussed in Section 4. Conclusions are drawn in the last section.

2. Materials and methods
2.1. Study area

To evaluate a potential calibration and validation test field for
future hyperspectral sensors, a comprehensive field campaign was
conducted over the Baotou test site (Inner Mongolia, China, 40.88°
N, 109.53° E) on 3 September 2011. The Baotou test site has an aver-
age ground elevation of approximately 1.3 km above sea level. The
test site receives little precipitation and has a high percentage of
cloud-free days. This area has a continental climate that is charac-
terized by four seasons and a large diurnal temperature variation.
The yearly average temperature is 6-7 °C, and the average annual
rainfall is 200-250 mm. The main agricultural crops of this region
are maize, potato, and sunflower, and all three require irrigation.

2.2. Data

2.2.1. In situ measurements

Four reference targets, which were 15m x 15 m and with nom-
inal reflectance of 20%, 30%, 40%, and 50%, were placed on a soil
background over the study area. These four targets were used
to perform the radiometric calibration of unmanned aerial vehi-
cle (UAV) hyperspectral sensor. In situ surface reflectance spectra
of these four targets were collected with an SVC HR-1024 field-
portable spectroradiometer at the time of UAV hyperspectral data
acquisition. The spectroradiometer has 1024 channels covering the
spectral range from 350 to 2500 nm with spectral resolution of
3.5nm at 700 nm wavelength, 9.5 nm at 1500 nm wavelength, and
6.5nm at 2100 nm wavelength. Before and after each target mea-
surement, a reference measurement was collected with a white
Spectralon reference panel. The spectra were measured in abso-
lute radiance mode at nadir. The raw spectra of each target were
scaled with the reference measurements to produce reflectance
spectra. Five measurements of each target were averaged to yield
a representative reflectance spectrum.

Atmospheric measurements were collected with an automatic
CIMEL CE318 sunphotometer at the time of the UAV hyperspectral

data acquisition. The sunphotometer has nine channels at nomi-
nal wavelengths of 340, 380, 440, 500, 670, 870, 936, 1020, and
1640 nm. Measurements at 936 nm were used to derive columnar
water vapor (CWV) (Bruegge et al., 1992) with the coefficients sim-
ulated by MODTRAN (Halthore et al., 1997). Aerosol optical depth
(AOD) at 550 nm was derived from the other channels using the
Angstrom law, following the method of Estellés et al. (2006). The
measured values of AOD at 550 nm and CWV at the time of UAV
hyperspectral data acquisition were 0.18 and 1.7 gcm™2, respec-
tively. These values were used as inputs to atmospheric radiative
transfer models such as MODTRAN to perform atmospheric correc-
tions on the UAV hyperspectral data.

In situ LAl measurements were collected with the Plant Canopy
Analyzer LAI-2200 instrument under overcast sky conditions on 2
September 2011. The average LAI was calculated in each sample
plot based on the one above-canopy measurement and five below-
canopy measurements. When LAl measurements were conducted,
the sun was kept behind the operator and the operator used a view
restrictor of 45°. No corrections were performed to account for leaf
clumping or the influence of non-photosynthetic plant components
(e.g., stems). A total of 14 LAl measurements were performed: 4 on
maize, 4 on potato, and 6 on sunflower plots. The measured LAI
values ranged from 2.4 to 3.2 m% m~2 for maize, 4.0-4.8 m2 m~2 for
potato, and 1.9-4.8 m%2 m~2 for sunflower. The in situ LAl measure-
ments were used to evaluate the accuracy of LAI estimation from
hyperspectral data.

2.2.2. UAV hyperspectral data

Two flight lines were acquired by a new hyperspectral sensor
over the study area on 3 September 2011 from approximately 14:40
to 15:00 local time. This hyperspectral sensor is referred to as UAV-
HYPER and was installed on a UAV. The UAV-HYPER sensor contains
128 bands that cover the spectral range from 350 to 1030 nm, with a
bandwidth of 5 nm and a field of view of 11.5°. During the campaign,
the operational altitude of the UAV-HYPER sensor was approxi-
mately 3.5 km above ground level, which gave a spatial resolution
of approximately 0.7 m.

The two flight lines L1 (west-east) and L2 (east-west) overlap.
The observation details of these two flight lines are summarized in
Table 1, and subset images of the two flight lines are shown in Fig. 1.
There are 10 sample plots located along flightline L1, 11 along flight
line L2, and 7 in the overlapping area.

Pre-processing of the UAV-HYPER data includes the assess-
ment of the signal-to-noise ratio (SNR), radiometric calibration, and
atmospheric and geometric corrections. Some bands of the UAV-
HYPER sensor have low SNR values. A method based on local means
and local standard deviations of small imaging blocks was used to
estimate SNR from the UAV-HYPER data (Gao, 1993). To minimize
the effect of low SNR on the LAl retrieval, 32 bands with SNR values
lower than 40 were discarded from further analysis: bands 1-12
(395.3-450.0nm) and bands 109-128 (932.5-1027.0nm). The
radiometric calibration coefficients were determined using the four
reference targets. The atmospheric correction was performed using
a MODTRAN-based LUT method informed by atmospheric param-
eters collected at the time of the UAV-HYPER data acquisitions
(Duan et al., 2013). The geometric correction was performed using
differential GPS-derived ground control points. A second-order
polynomial transformation with nearest-neighbor interpolation
was used for the geometric correction, which achieved a geometric
accuracy of approximately one pixel.

2.3. Method
2.3.1. Generation of the LUT

The PROSAIL model (Jacquemoud et al., 2009), which cou-
ples the PROSPECT leaf optical properties model (Jacquemoud and
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Table 1
Acquisition time and sun-sensor geometry of the flight lines L1 and L2.
Flight line Local time SZA SAA VZA? VAA Orientation
Min Max Mean
L1 14:43 42.8° 227.5° 0.2° 4.7° 1.9° 172.2° West-east
L2 14:53 44.2° 230.5° 0.9° 5.4° 3° 6.9° East-west

SZA: solar zenith angle, SAA: solar azimuth angle, VZA: view zenith angle, and VAA: view azimuth angle.
2 Minimum, maximum, and mean VZA values of sample plots in the flight lines L1 and L2.

Baret, 1990) with the SAIL canopy reflectance model (Verhoef,
1984, 1985), was selected to construct an LUT. This model has
been widely validated and applied to reflectance modeling studies
(Darvishzadeh et al., 2008b; Si et al., 2012).

Fig. 1. Subset images of the flight lines (a) L1 (west—east) and (b) L2 (east-west)
acquired over the study area. Plus signs denote LAl sample plots. Two additional LAI
sample plots (not shown) exist outside the subset of the L2 image.

The PROSPECT model simulates the leaf hemispherical trans-
mittance and reflectance as a function of four structural and
biochemical leaf parameters: leaf structure parameter N (unitless),
leaf chlorophyll a + b concentration Cgp, (ug cm—2), equivalent water
thickness Cy, (gcm~2), and dry matter content Gy, (gcm=2). The
leaf optical properties (leaf reflectance and transmittance) sim-
ulated by the PROSPECT model are then inputted into the SAIL
model. The SAIL model simulates the top-of-the-canopy reflectance
as a function of eight input parameters: LAI (m? m~2), average leaf
angle ALA (deg) of an ellipsoidal leaf angle distribution function
(Campbell, 1990), fraction of diffuse incoming solar radiation skyl
(unitless), wavelength-dependent canopy background reflectance
(i.e., soil reflectance), hot-spot size parameter hot (mm~1) (Kuusk,
1995), sun zenith angle ts (deg), sensor viewing angle t, (deg), and
relative azimuth angle phi (deg) between the sensor and sun.

To account for the variations in soil brightness induced by
soil moisture and surface roughness, a soil brightness parame-
ter (scale) was used to scale and shape an average soil spectrum
(Darvishzadeh et al., 2012):

Rs = scale x 15 (1)

where 1y and Rs are the average soil spectrum before and after
scaling, respectively.

To generate the LUT, the PROSAIL model was run in forward
mode to simulate canopy reflectance for an appropriate number of
parameter combinations. An LUT size of 100,000 parameter com-
binations was found to achieve a good compromise between the
computer resource requirement and the accuracy of canopy vari-
able estimation (Weiss et al., 2000). The same LUT was used for the
LAI estimation of all three crops. The 100,000 parameter combi-
nations were randomly generated with uniform distributions and
specific ranges for the variables in Table 2:

V(n) = min +(max — min) x rand(n) (2)

where Vis the variable, n is the number of parameter combinations,
rand is the uniform random number generator, and min and max
are the minimum and maximum of the variable, respectively.

The ranges (minimum and maximum) of the variables (Table 2)
were selected in accordance with previous studies (Darvishzadeh
et al, 2011; Koetz et al., 2005; Richter et al., 2011; Si et al., 2012).
The parameter skyl depends on atmospheric conditions, the solar
zenith angle, and wavelength. Because it has only a very small
influence on canopy reflectance, skyl was fixed at 0.1 across all

Table 2

Ranges of the input variables for the PROSAIL model for the generation of the LUT.
Variable Abbr.  Unit Minimum  Maximum
Leaf structure parameter N Unitless 1 2
Leaf chlorophyll concentration  Cgp pgem=—2 20 70
Dry matter content Cn gcm—2 0.004 0.007
Equivalent water thickness Cw gcm—2 0.005 0.03
Leaf area index LAI m? m—2 0.001 6
Average leaf angle ALA Deg 30 70
Hot-spot size parameter hot mm~! 0.05 1
Soil brightness parameter scale Unitless 0.5 1.5
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Table 3

Accuracy of LAI estimation from single-angle observations L1 and L2 for maize,
potato, sunflower, and all crops. RRMSE is the RMSE divided by the average of the
in situ LAl measurements.

Crop type L1 L2

RMSE (m? m~2) RRMSE (%) RMSE (m? m~2) RRMSE (%)
Maize 0.58 21.1 0.96 31.1
Potato 0.62 14.2 0.22 5.2
Sunflower 0.45 10.6 0.39 10.3
All crops 0.55 143 0.51 13.6

wavelengths, as in previous studies (Atzberger and Richter, 2012;
Darvishzadeh et al., 2008b; Richter et al., 2009; Vuolo et al., 2008). A
soil reflectance spectrum corresponding to an average of local mea-
surements was used to characterize the background reflectance.
Sun-sensor geometry corresponding to the situation of the UAV-
HYPER data acquisitions (see Table 1).

2.3.2. Inversion of the LUT

To select the solution of the inverse problem, the LUT is sorted
in terms of the cost function xgrmsg corresponding to the RMSE
between the measured reflectance Ryeasured and the simulated
reflectance Rgmulatea found in the LUT (Combal et al., 2002a;
Vohland et al., 2010):

g My

1 i.j i 2
ng - Ny ZZ (Rmeasured - Rsimulated) (3)

i=1 j=1

XRMSE =

where ny is the number of viewing directions and n,, is the number
of bands.

The solution is found by identifying the set of variables in the LUT
that minimize the ygrmsg value. However, because measurement
errors and model inadequacies make this an ill-posed problem, the
solution may not be unique. For this reason, the solution is the
average of the parameter combinations that yield within 20% of
the smallest yryvsg value. The 20% threshold is consistent with the
optimum number adopted by previous studies (e.g., Dorigo, 2012;
Koetz et al., 2005; Vohland et al., 2010).

3. Results
3.1. LAl estimation from single-angle observations

The LUT-based inversion of the PROSAIL model was performed
to estimate LAI from the single-angle observations (SAOs) L1 and
L2.The LAl was averaged over 3 x 3 pixel windows centered at each
sample plot. The estimated LAls from the SAOs L1 and L2 versus the
in situ LAl measurements are shown in Fig. 2(a) and (b), respec-
tively, and are summarized in Table 3. Horizontal error bars denote
+1 standard deviation of the in situ LAl measurements at each sam-
ple plot. Vertical error bars indicate 1 standard deviation of the
estimated LAI in the 3 x 3 pixel windows centered at each sample
plot. The accuracy of the LAI estimation was evaluated in terms of
the RMSE and relative RMSE, where RRMSE is the RMSE divided by
the average of the in situ LAl measurements.

As displayed in Fig. 2, the estimated LAI from the SAO L1 slightly
overestimated the in situ LAl measurements for some sample plots
where LAI values exceeded 3.5, with RMSE of 0.55m?m~2 and
RRMSE of 14.3%, whereas the estimated LAI from the SAO L2
slightly underestimated the in situ LAl measurements for some
sample plots, with RMSE of 0.51m2m~2 and RRMSE of 13.6%.
Table 3 shows the accuracy of the LAI estimation from the SAOs
L1 and L2 for maize, potato, sunflower, and all crops. For the SAO
L1, the RMSE value decreases from 0.62m?m~2 for potato and
0.58 m? m~2 for maize to 0.45m? m~2 for sunflower, whereas the
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Fig. 2. Comparison between the in situ LAl measurements and the estimated LAI
from single-angle observations (a) L1 and (b) L2, respectively. Horizontal error bars
denote +1 standard deviation of the in situ LAl measurements at each sample plot.
Vertical error bars indicate +1 standard deviation of the estimated LAl in 3 x 3 pixel
windows centered on each sample plot. RRMSE is the RMSE divided by the average
of the in situ LAl measurements.

RRMSE value decreases from 21.1% for maize and 14.2% for potato
to 10.6% for sunflower. For the SAO L2, the RMSE value decreases
from 0.96m?2m~2 for maize and 0.39m2?m2 for sunflower to
0.22 m? m~2 for potato, whereas the RRMSE value decreases from
31.1% for maize and 10.3% for sunflower to 5.2% for potato. Never-
theless, the accuracy of LAI estimation for all crops is similar for the
SAOs L1 and L2.

3.2. LAl estimation from dual-angle observations

The two overlapping flight lines L1 and L2 provide an opportu-
nity to estimate LAI from dual-angle observations (DAOs). Prior to
applying the model inversion to estimate LAI from the DAO, it is
necessary to evaluate whether the LAI estimation from the SAOs
L1 and L2 is robust. Fig. 3 shows the estimated LAI from the SAO
L1 versus the estimated LAI from the SAO L2 for 7 sample plots in
the overlapping area of the two flight lines. There are discrepancies
between the LAI estimated from the SAOs L1 and L2: the estimated
LAI from the SAO L1 is higher than that from the SAO L2 for the
7 sample plots. These results indicate that integrating the SAOs L1
and L2 simultaneously into the inversion scheme may improve the
accuracy of LAI estimation.

To further check whether including a second observation angle
adds the angular anisotropy information, anisotropy index versus
wavelength for the 7 sample plots is shown in Fig. 4. The specific
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Fig. 3. Comparison between the estimated LAI from single-angle observations L1
and L2. Horizontal error bars denote +1 standard deviation of the estimated LAI
from L1 at each sample plot. Vertical error bars indicate 1 standard deviation of
the estimated LAI from L2 at each sample plot.

definition of the anisotropy index can be found in Sandmeier et al.
(1998). In our study, the anisotropy index is calculated as the ratio
of surface reflectance of the SAOs L1 and L2 for each of the 7 sample
plots. As the surface reflectance of these 7 samples plots retrieved
from SAOs L1 and L2 below approximately 0.52 pm is very small
(<0.05), their ratio may lead to high (>4.0) or low (<1.0) anisotropy
index values. Considering the uncertainties involved in the surface
reflectance retrieval, the anisotropy index below approximately
0.52 pm should be taken with caution here. As seen from Fig. 4,
the values of the anisotropy index range from approximately 1.2
to 2.0 in the wavelength range between approximately 0.52 and
0.7 pm. There are relative strong anisotropy effects around 0.7 wm
(red region) and relative low anisotropy effects around 0.56 wm
(green region) for some sample plots due to the strong chlorophyll
absorbance in red region and low in green region (Sandmeier et al.,
1998). The values of the anisotropy index are lower than approx-
imately 1.2 in the spectral region above approximately 0.7 pum
due to the multiple scattering effects which reduce the contrast
between shadowed and illuminated canopy components and result
in small anisotropy effects (Dorigo, 2012).

The accuracy of LAI estimation from the DAO for all crops is
shown in Fig. 5. Horizontal error bars are +1 standard deviation
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Fig.4. Anisotropy index versus wavelength for the 7 sample plots in the overlapping
area of the flight lines L1 and L2.
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Fig. 5. Comparison between the in situ LAl measurements and the estimated LAI
from dual-angle observations. Horizontal error bars denote +1 standard deviation
of the in situ LAl measurements at each sample plot. Vertical error bars indicate
+1 standard deviation of the estimated LAI in 3 x 3 pixel windows centered on
each sample plot. RRMSE is the RMSE divided by the average of the in situ LAI
measurements.

of the in situ LAl measurements at each sample plot. Vertical error
bars represent 41 standard deviation of the estimated LAl in 3 x 3
pixel windows centered at each sample plot. A comparison of the
accuracy of LAl estimation between the SAO and the DAO was per-
formed in the overlapping area of the flight lines. There are 7 sample
plots in this area, with the measured LAI values ranging from 3.0 to
4.8 m? m~2. The accuracy of LAl estimation from the DAO was eval-
uated using these 7 sample plots. In addition, the accuracy of LAI
estimation from the SAOs L1 and L2 was also re-calculated using
these 7 sample plots. These results are shown in Table 4. The accu-
racy of LAl estimation from the DAO is slightly higher than that from
the SAOs L1 and L2. The RMSE value decreases from 0.61 m% m—2
for the SAO L1 and 0.62 m? m~2 for the SAO L2 to 0.55m? m~2 for
the DAO. Moreover, the RRMSE value decreases from 15.1% for the
SAO L1 and 15.5% for the SAO L2 to 13.6% for the DAO.

3.3. Comparison between different LUT sizes

To analyze the influence of different LUT sizes on the accuracy
of LAl estimation, two more LUTs with sizes of 50,000 and 250,000
were generated using the same uniform distributions and ranges
of the variables as the LUT with a size of 100,000. The LAI estima-
tion was performed for the SAO and the DAO using different LUT
sizes. The results are shown in Table 5. There is no significant dif-
ference between the accuracy of LAl estimation using different LUT
sizes. Similar results were obtained by Darvishzadeh et al. (2012),
who used three different LUT sizes (50,000, 100,000, and 250,000)
to estimate canopy chlorophyll content. They concluded that the
size of the LUT was not significantly important for canopy chloro-
phyll content retrieval when the inverse problem had more than
100 viable solutions. In addition, Richter et al. (2009) compared
two LUTs with sizes of 100,000 and 200,000 for LAI estimation and
found that the larger LUT did not improve the accuracy of the LAI

Table 4

Accuracy of LAI estimation from single-angle observations (SAOs) and dual-angle
observations (DAOs). RRMSE is the RMSE divided by the average of the in situ LAI
measurements.

Data RMSE (m? m-2) RRMSE (%)
SAO L1 0.61 15.1
SAO L2 0.62 155
DAO 0.55 13.6




S.-B. Duan et al. / International Journal of Applied Earth Observation and Geoinformation 26 (2014) 12-20 17

Table 5

Accuracy of LAl estimation from single-angle observations (SAOs) and dual-angle observations (DAOs) using different LUT sizes. RRMSE is the RMSE divided by the average

of the in situ LAl measurements.

Data 50,000 100,000

250,000

RMSE (m2 m~2) RRMSE (%)

RMSE (m? m~2)

RRMSE (%) RMSE (m? m~2) RRMSE (%)

SAO L1 0.60 14.9 0.61
SAO L2 0.63 15.5 0.62
DAO 0.55 13.6 0.55

151 0.61 15.0
15.5 0.63 15.5
13.6 0.55 13.7

estimation. Therefore, following Weiss et al. (2000), this study uses
an LUT size of 100,000 - a good compromise between accuracy and
computer resources — to estimate the LAI from the SAO and the
DAO.

3.4. Comparison of different cost functions

To assess the influence of different cost functions on the accu-
racy of LAI estimation, a second cost function was also used in
the model inversion. This cost function, xrrmse, corresponds to the
RRMSE between the measured reflectance Rye;sured and the simu-
lated reflectance Rgjmujated found in the LUT (Weiss et al., 2000):

]

L. 2
g My ij ,
1 E E Rmeasured — Rsimulated (4)
Ng-np Ri’j

i=1 j=1 measured

XRRMSE =

Fig. 6(a) and (b) show the in situ LAl measurements versus the
estimated LAI from the SAOs L1 and L2 using the cost function
Xrrmse- The RMSE and RRMSE values are 0.82m2 m~2 and 21.3%
for the SAO L1, and 0.60 m? m~2 and 16.0% for the SAO L2. As the
difference between Fig. 6(a) and (b) and Fig. 2(a) and (b) shows,
the LAI estimation using the cost function ygrruse is less accurate
than that using the cost function yrmse. As the difference between
Fig. 6(c) and Fig. 5 shows, similar results are achieved for the DAO:
the RMSE and RRMSE values are 0.66 m? m~2 and 16.4% for the cost
function xgrmse, and 0.55m? m—2 and 13.6% for the cost function
XRMSE- Because of its better accuracy, we used the cost function
XRMSE More often in this study.

4. Discussion
4.1. Impact of row crops on the model inversion

Fig. 2 indicates that the estimated LAI from the SAO L1 was often
slightly greater than the measured LAI for LAI values above 3.5,
whereas the estimated LAI from the SAO L2 was often slightly less
than the measured LAIL These results may be because the PROSAIL
model does not take into account the shading effect of row crops
(Dorigo, 2012). The shading effect results in enhanced reflectance
in the backward scattering direction (the perspective of SAO L1)
and in reduced reflectance in the forward scattering direction (the
perspective of SAO L2), as observed in Fig. 7. Similar results were
obtained by Schlerf and Atzberger (2012) and Verrelst et al. (2012),
who used the multi-angular CHRIS/PROBA data to estimate LAL

The results shown in Fig. 2 also demonstrate a significant under-
estimation in the estimated LAI for maize. This may be because
the PROSAIL model was initially developed for canopies for which
the turbid medium assumption, where the leaves are randomly
distributed within the canopy volume (Jacquemoud et al., 2009),
is valid. The canopy characteristics of maize deviate from this
assumption. Maize, a typical row crop, is affected by leaf clumping,
which the PROSAIL model does not take into account. Therefore,
the PROSAIL model underestimated maize LAI compared to the
in situ LAl measurements. Similar results were described in other
studies (e.g., Richter et al., 2009, 2011). To reduce the effect of
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Fig. 6. Comparison between the in situ LAl measurements and the estimated LAI
from single-angle observations (a) L1 and (b) L2 and (c) dual-angle observations
using the cost function xrrmse (Eq. (4)). RRMSE is the RMSE divided by the average
of the in situ LAl measurements.
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Fig. 7. Measured surface reflectance from single-angle observations L1 and L2 for
(a) maize, (b) potato, and (c) sunflower.

row structure on the estimation of LAI for maize, Yao et al. (2008)
proposed to use a row structure model for early growth stage
(before elongation) and a homogeneous canopy model for later
growth stage (after elongation).

LAI estimation for potato and sunflower yielded lower RRMSE
values than for maize. This result may be because potato and sun-
flower fields exhibited more homogeneous coverage than maize
fields. Except for one sunflower sample plot, the measured LAI val-
ues for potato and sunflower are higher than 4 m2 m~2, whereas
those for maize are lower than 3.5 m2 m—2. Consequently, the soil

background has a smaller influence on the LAl estimation for potato
and sunflower fields than for maize fields.

Improving the accuracy of LAl estimation for row crops requires
hybrid turbid/geometrical models that take row structure into
account. For example, coupling the improved PROSPECT model
(Feret et al., 2008) with a canopy reflectance model accounting
for row structure (e.g., Zhao et al., 2010) will improve the accu-
racy of LAI estimation. Nevertheless, the inversion of such a model
requires high parameterization loads, which come at the expense
of conceptual and computational complexity.

4.2. Impact of the ill-posed inverse problem

The LUT-based inversion of the PROSAIL model is, by nature, an
ill-posed problem because various combinations of canopy param-
eters may yield similar spectra. Combal et al. (2002a) showed that
the use of a priori information is an efficient way to solve the ill-
posed problem and to improve the accuracy of LAI estimation.
Later studies used a priori information on the distributions and
ranges of the variables to regularize the ill-posed inverse problem
(Darvishzadeh et al., 2008b; Si et al., 2012). In this study, we use the
approximate ranges from the in situ measurements of the parame-
ters LAl and ALA as a priori information to generate the LUT. The sun
zenith angle, the sensor viewing angle, and the relative azimuth
angle were fixed at the sun-sensor geometry of the UAV-HYPER
data acquisitions, but the other input parameters were constrained
a priori to ranges defined by the results of previous studies.

Due to the lack of a priori information on variables for each sepa-
rate crop species, we generated the same LUT for maize, potato, and
sunflower. However, the differences in the accuracy of LAI estima-
tion demonstrate that the use of a well-adapted parameter input
set for each crop species may improve the accuracy of LAI estima-
tion. To constrain the ranges of variables, Dorigo et al. (2009) and
Verrelst et al. (2012) used land cover classification to construct a
specific LUT for each vegetation class.

Selecting the cost function of the model inversion is a critical
step in solving the ill-posed inverse problem. Meroni et al. (2004)
showed that better accuracy was achieved using a cost function that
included radiometric and priori information than using a cost func-
tion that included only radiometric information. However, often,
only limited information about the crop status in an agricultural
area is available, so the cost functions in this study were often con-
strained by radiometric information only. We compared two cost
functions xrmse (Eq. (3)) and xrrmse (EQ. (4)). The accuracy of LAI
estimation using the cost function ygrmsg was higher than that using
the cost function Ygrmse.

The use of multi-angle observations instead of just the nadir
view has also proven to be an efficient way to constrain the ill-posed
problem. This aspect is discussed in the following section.

4.3. Multi-angle observations

Table 5 shows that the DAO gave a more accurate LAl estimation
than did the SAO. The results are consistent with those obtained by
Dorigo (2012), Meroni et al. (2004), Vuolo et al. (2008), and Yang
etal.(2011), who showed that directional informationimproves the
accuracy of LAl estimation. There were only two angle observations
available for each pixel in this study, and their angular anisotropy
differed by only small amounts. Consequently, the RMSE (RRMSE)
value of the LAI estimation from the DAO was only approximately
0.05 m? m~2(2%)lower than that from the SAO. If more angle obser-
vations can be acquired for each pixel, the accuracy of LAI estima-
tion may be further improved. However, more angle observations
may also add to the uncertainty of the LAI estimation. For exam-
ple, Dorigo (2012) showed that including the +55° viewing angle of
the CHRIS/PROBA in the inversion scheme dramatically reduced the
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accuracy of LAl estimation. Therefore, optimal directional sampling
is necessary to obtain high accuracy of LAl estimation.

5. Conclusions

This study investigated the performance of LUT-based inversion
of the PROSAIL model for LAl estimation from the UAV-HYPER data.
LAl estimation was performed along two overlapping flight lines, L1
and L2, in a study area over three typical row crops: maize, potato,
and sunflower. In situ LAl measurements were also collected. The
estimated LAl was evaluated against the in situ LAl measurementsin
terms of the RMSE and RRMSE. For the SAO L1, the best-performing
crop was sunflower, with an RMSE of 0.45 m? m~2 and an RRMSE of
10.6%, and the worst-performing crop was potato, with an RMSE of
0.62 m? m~2 and an RRMSE of 14.2%. For the SAO L2, the best accu-
racy was achieved for potato, with an RMSE of 0.22 m%2 m~2 and an
RRMSE of 5.2%, whereas the worst accuracy was achieved for maize,
with an RMSE of 0.96 m? m~2 and an RRMSE of 31.1%. Nevertheless,
the accuracy of LAl estimation for all crops was similar for the SAOs
L1 and L2. These results indicate that the PROSAIL model is suitable
for LAI estimation for these three crops with reasonable accuracy
in terms of the RMSE and RRMSE.

The UAV-HYPER data in the area where the flight lines over-
lapped provided an opportunity to estimate LAI from the DAO.
The estimated LAI from the SAO and the DAO were compared
against the in situ LAl measurements. The RMSE (RRMSE) value was
approximately 0.62 m2 m~2 (15.5%) for the SAO and approximately
0.55m2 m~2 (13.6%) for the DAO. These results show that using the
DAO rather than the SAO improves the accuracy of LAL The effects
of different LUT sizes on the accuracy of LAI estimation were also
investigated. The results demonstrate that the size of the LUT does
not affect the accuracy of the LAl estimation. The impact of different
cost functions on the accuracy of LAl estimation was also analyzed.
The results showed that the choice of cost function influences the
accuracy of LAI estimation.
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