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Land surface temperature (LST) is crucial for a wide variety of land–atmosphere studies. A long-term and time-
consistent LST product is highly desirable for use in global climate studies. In this study, we developed a method
to normalize the Terra-MODIS LST during daytime to a consistent local solar time to generate a time-consistent
LST product. A multiple linear regression model for the slope of LST versus the local solar time during the period
10:00–12:00 as a function of the normalized-difference vegetation index, solar zenith angle, and digital elevation
model was established using MSG-SEVIRI data. The regression equation was then applied to normalize the
Terra-MODIS LST during daytime to a consistent local solar time (i.e., 11:00 local solar time). The accuracy of
the proposedmethodwas evaluated usingMSG-SEVIRI-derived LST data. The results indicate that the rootmean
square error of the differences between the LST before temporal normalization and the actual LST (derived from
MSG-SEVIRI data) is approximately 1.5 K, whereas those between the LST after temporal normalization and the
actual LST is approximately 0.5 K.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Land surface temperature (LST), which is a key variable in the physical
processes of land surface energy andwater balance on regional and global
scales, is widely used in a range of hydrological, meteorological, and cli-
matological applications (Anderson et al., 2008; Karnieli et al., 2010; Li
et al., 2009). Satellite remote sensing offers the only possibility tomeasure
LST over extended regionswith high temporal and spatial resolution (Li &
Becker, 1993; Li, Tang, et al., 2013a). To date, one of the highest-quality
LST products has been generated from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) onboard the Terra and Aqua platforms
(Wan, 2008; Wan, Zhang, Zhang, & Li, 2002, 2004).

Two MODIS LST algorithms were developed to generate the MODIS
LST products. One algorithm is the generalized split-window algorithm
(Becker & Li, 1990; Wan & Dozier, 1996), which generates LST data at
1 km resolution. The other algorithm is the physics-based day/night
algorithm (Wan& Li, 1997), which generates LST data at approximately
5 km (Collection 4) and 6 km (Collection 5) resolution. Two different
methods were used to validate the MODIS LST products: a temperature-
based method (Wan, 2008; Wan et al., 2002, 2004; Wang, Liang, &
Meyers, 2008) and a radiance-based method (Coll, Wan, & Galve, 2009;

Wan & Li, 2008). Comparisons between the MODIS LST products and in
situ measurements indicate that the accuracy of the MODIS LST products
is better than 1 K for a given observation time and angle. Therefore, the
MODIS LST products have been widely used in various studies (Friedl
et al., 2010; Tang & Li, 2008; Tang, Li, & Tang, 2010; Wang et al., 2005).

Due to the intrinsic scanning characteristics of theMODIS instrument
onboard the polar-orbiting satellites, the differences in local solar time
for pixels along a given scan line on the same day (see Fig. 1a) or for
the same pixel on different days in one revisit period (see Fig. 1b) may
reach up to 2 h. As LST changes with local solar time, it is therefore not
possible to directly compare the LST of different pixels on the same
day or of the same pixel on different days. Fig. 2 displays LST versus
local solar time during the period 10:00–12:00 for in situ data and
data from the Meteosat Second-Generation Spinning-Enhanced Visible
and Infrared Imager (MSG-SEVIRI) for various land cover types. One
hour of differences in local solar time during the period 10:00–12:00
corresponds to LST differences of approximately 3–5 K. Table 1 shows
the detailed information and statistics for the data displayed in Fig. 2.
To make the LST of different pixels on the same day or of the same
pixel on different days comparable, it is therefore necessary to normal-
ize LST to a consistent local solar time to generate a time-consistent LST
product. A long-termand time-consistent LST dataset is highly desirable
for use in global climate studies (Jin & Dickinson, 2002).

Various methods related to the temporal normalization of LST have
been developed using the diurnal cycle of LST. If the diurnal cycle of
LST is available, LST at any time can be derived in terms of a diurnal
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temperature cycle (DTC) model (Duan, Li, Wang, Wu, & Tang, 2012;
Göttsche & Olesen, 2001, 2009; Schädlich, Göttsche, & Olesen, 2001).
Jin and Dickinson (1999) developed an algorithm to estimate the
diurnal cycle of LST by interpolating twice-per-day measurements
taken by the National Oceanic and Atmospheric Administration
(NOAA) Advanced Very-High-Resolution Radiometer (AVHRR) into
the typical patterns of the diurnal LST cycle under cloud-free condi-
tions. These typical patterns are derived from climatology modeled
as a function of vegetation types, soil moisture, seasons, and altitude.
Therefore, information about vegetation types, soil moisture, and
cloud conditions is required to determine the typical pattern of
each pixel. This method has also been applied to normalize the
NOAA-AVHRR LST with orbit drift effect to a consistent local solar
time (Jin & Treadon, 2003). Sun and Pinker (2005) performed work
similar to that of Jin and Dickinson (1999), but the typical patterns
of the diurnal LST cycle were derived from Geostationary Operation-
al Environmental Satellite (GOES) measurements, rather than those
from modeled climatology. Nevertheless, accurate LST retrievals
from GOES data for the purpose of obtaining the typical patterns of
the diurnal LST cycle remain difficult because of atmospheric effects
and the spectral variation of surface emissivity (Li, Wu, et al., 2013b).
A similar method has been developed by Mialon, Royer, Fily, and
Picard (2007) to interpolate satellite-derived LST from the diurnal
cycle of 40-yr European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis (ERA-40) temperatures. Aires, Prigent,
and Rossow (2004) proposed a temporal interpolation algorithm to
estimate the diurnal cycle of LST using a principal component analysis
decomposition and an iterative optimization algorithm. However, this
algorithm is based on 3-hour LST estimates by the International Satellite
Cloud Climatology Project (ISCCP), from infrared measurements col-
lected by polar-orbiting and geostationary satellites. Inamdar, French,

Hook, Vaughan, and Luckett (2008) developed an algorithm combining
GOES and MODIS data to estimate the diurnal cycle of LST on a 1-km
spatial scale. However, the diurnal cycle of LST at a 1-km resolution is
disaggregated from that at a 5-km resolution, using the relationship be-
tween LST and the normalized-difference vegetation index (NDVI). The
disaggregation method has been further improved using surface emis-
sivity data (Inamdar & French, 2009).

The methods described above can be applied to the normalization of
LST to a consistent local solar time. However, these methods require the
typical patterns of the diurnal LST cycle, which are derived from climate
models or satellite measurements. Therefore, a simple and straightfor-
wardmethod for the temporal normalization of LST is needed. The objec-
tive of this study is to develop a method to normalize the Terra-MODIS
LST during daytime to a consistent local solar time to generate a time-
consistent LST product. This method only requires that there be no
cloud contamination during the period 10:00–12:00 local solar time,
rather than nearly clear-sky conditions throughout the day. This paper
is organized as follows: Section 2 describes the study area and the data
used in this study. Section 3 describes the method for the temporal nor-
malization of LST. The results and discussion are presented in Section 4.
Conclusions are presented in the last section.

2. Study area and data

2.1. Study area

The study area extends from 15° W to 15° E longitude and 30° N to
48° N latitude. This area is in the Mediterranean region and has a
Mediterranean climate, with mild, rainy winters and hot, dry summers.
The land cover types of the study area are shown in Fig. 3. This area is
characterized by barren or sparsely vegetated lands, croplands, and

Fig. 1. Local solar time (a) for pixels in one MODIS scan line (1354 pixels) and (b) for the same pixel in one MODIS revisit period.

Fig. 2. Land surface temperature versus local solar time during the period 10:00–12:00 for (a) in situ and (b) MSG-SEVIRI-derived LST for different land cover types.
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open shrublands. Detailed information on the land cover types is shown
in Table 2. The elevation of the study area ranges from−103 to 4536 m.

2.2. DEM data

The global digital elevation model (DEM) data GTOPO30 were
downloaded from the USGS website (http://eros.usgs.gov/). The
GTOPO30 data cover the full extent of the longitudes from 180° W
to 180° E and latitudes from 90° N to 90° S. The horizontal grid spac-
ing is 30 arc-seconds (approximately 1 km). The horizontal coordi-
nate system is decimal degrees of latitude, and the longitude is
referenced to WGS84. The vertical units represent elevation in me-
ters above mean sea level. In the DEM data, ocean areas are masked as
“no data” and are assigned a value of −9999. Four tiles (W020N90,
E020N90, W020N40, and E020N40) covered the study area were used
in this study. The GTOPO30 data were aggregated to the MSG-SEVIRI
and MOD11A1 pixel scale in terms of longitude and latitude.

2.3. MODIS data

ThreeMODIS products were used in this study: (1) theMODIS/Terra
Land Surface Temperature and Emissivity Daily L3 Global 1-km SINGrid
product (MOD11A1, Collection 5), (2) the MODIS/Terra Surface Reflec-
tance Daily L2G Global 1-km and 500-m SIN Grid product (MOD09GA,

Collection 5), and (3) theMODIS Terra + Aqua Land Cover Type Yearly
L3 Global 500-m SIN Grid product (MCD12Q1, Collection 5.1). These
three MODIS products were downloaded from the Reverb website
(http://reverb.echo.nasa.gov/).

TheMOD11A1 product provides per-pixel LST and emissivity values
at 1-km resolution using the generalized split-window algorithm (Wan
& Dozier, 1996). LST, observation time (local solar time), and quality
control during daytime were extracted from the MOD11A1 product.
Only the pixels identified as clear sky over land were used in this study.

The MOD09GA product provides MODIS bands 1–7 of daily surface
reflectance at 500-m resolution and observation and geolocation statis-
tics at 1-km resolution (Vermote et al., 1997). The daily surface reflec-
tance of bands 1 and 2 was extracted to calculate the daily NDVI. The
solar zenith angle (SZA) at 1-km resolution was also extracted from
the MOD09GA product. The NDVI and SZA were aggregated to the
MSG-SEVIRI andMOD11A1 pixel scale in terms of longitude and latitude.
Although the surface reflectance of theMSG-SEVIRI red andnear infrared
(NIR) channels can be used to calculate NDVI, it is difficult to obtain cor-
responding atmospheric parameters to derive surface reflectance from
the MSG-SEVIRI data. Therefore, the surface reflectance of the MODIS
red and NIR channels was used to calculate NDVI in this study.

The MCD12Q1 product contains five different land cover classifica-
tion schemes (Friedl et al., 2010). The primary land cover scheme,

Table 1
Detailed information and statistics for the data displayed in Fig. 2.

Land cover type Longitude Latitude Date SLPa R2b STD (K)c

Cement 119.832 W 34.452 N 22 Feb 2003 4.10 0.99 0.24
Grass 119.833 W 34.452 N 22 Feb 2003 2.33 0.95 0.34
Dry soil 116.611 E 39.603 N 27 Oct 2008 4.04 0.94 0.63
Sandy soil 116.611 E 39.603 N 27 Oct 2008 3.71 0.96 0.50
Maize 0.125 E 44.323 N 16 Jun 1996 2.74 1.00 0.11
Wheat 0.268 E 43.825 N 16 Jun 1996 2.59 0.98 0.22
Forest 0.954 W 42.454 N 31 Jul 2010 1.90 1.00 0.09
Shrubland 2.005 W 33.872 N 31 Jul 2010 3.38 0.99 0.24
Woodland 7.302 W 40.238 N 31 Jul 2010 2.89 1.00 0.13
Grassland 0.870 W 34.014 N 31 Jul 2010 3.69 0.99 0.21
Cropland 4.576 W 37.446 N 31 Jul 2010 2.89 0.99 0.23
Unvegetated 7.490 E 32.600 N 31 Jul 2010 3.89 0.99 0.22

a SLP is the slope of LST versus local solar time.
b R2 is the coefficient of determination.
c STD is the standard error of the estimate.

Fig. 3. Land cover types of the study area generated from the Collection 5.1 MODIS land cover type product MCD12Q1. All pixels in the dashed line were used to evaluate the differences
between the LST before and after temporal normalization, as described in Section 4.5.

Table 2
Land cover classes before and after combination. The percent of each land cover class
before combination over the study area is shown in parentheses.

IGBP class Before combination After combination

0 Water (48.27%) –

1 Evergreen needleleaf forest (0.90%) Forest
2 Evergreen broadleaf forest (0.04%)
3 Deciduous needleleaf forest (0.01%)
4 Deciduous broadleaf forest (0.42%)
5 Mixed forest (4.60%)
6 Closed shrublands (0.11%) Shrubland
7 Open shrublands (7.22%)
8 Woody savannas (3.63%) Woodland
9 Savannas (0.69%)
10 Grasslands (2.96%) Grassland
11 Permanent wetlands (0.05%) –

12 Croplands (12.55%) Cropland
14 Cropland/natural vegetation mosaic (3.99%)
15 Snow and ice (0.06%) –

13 Urban and built-up (0.66%) Unvegetated
16 Barren or sparsely vegetated (13.84%)
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defined by the International Geosphere–Biosphere Programme (IGBP),
was used in this study. To match the MSG-SEVIRI pixels, the
MCD12Q1 pixels were aggregated to the MSG-SEVIRI pixel scale in
terms of longitude and latitude. Each MSG-SEVIRI pixel was assigned
to the dominant land cover class within this pixel according to the
MCD12Q1 land cover class. The aggregated land cover classes were
combined into six general land cover classes: forest, shrubland, wood-
land, grassland, cropland, and unvegetated land (see Table 2). The per-
manent wetland class and the snow and ice class were discarded
because of their extremely small sample size over the study area. In ad-
dition, all ocean pixels defined by the land/water mask were excluded.
The same procedures were also performed to aggregate the MCD12Q1
pixels at 500-m resolution to the MOD11A1 pixels at 1-km resolution.

2.4. MSG-SEVIRI data

TwoMSG-SEVIRI products were used in this study: (1) the level-1.5
image data and (2) the cloud mask. These two MSG-SEVIRI products
were downloaded from the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT) Earth Observation Portal
(EOP) website (https://eoportal.eumetsat.int/).

The level-1.5 image data are the geolocated and radiometrically pre-
processed image data, which are stored as digital counts in binary files.
The image data were converted into the top-of-the-atmosphere (TOA)
brightness temperature in the MSG-SEVIRI channels 9 and 10 using
the SEVIRI Pre-processing Toolbox (SPT) software. The MSG-SEVIRI
LST was derived from the MSG-SEVIRI TOA brightness temperature in
channels 9 and 10, using the algorithm proposed by Jiang, Li, and
Nerry (2006) and Jiang and Li (2008).

The cloudmask product is an image-based product derived from the
results of scene analysis. Each pixel is classified as one of the following
four types: (1) cloudy, (2) clear sky over land, (3) clear sky over sea,
and (4) not processed. Only the pixels identified as clear sky over land
were used in this study.

3. Methodology

As shown in Fig. 2 and Table 1, there is a high correlation between
LST and the local solar time during the period 10:00–12:00, with a
coefficient of determination (R2) greater than 0.94 for the in situ
and MSG-SEVIRI-derived LST. Assuming that LST changes linearly
with the local solar time during the period 10:00–12:00, the clear-sky
Terra-MODIS LST during daytime can be normalized to a consistent
local solar time (e.g., 11:00 local solar time) in terms of the slope of
LST versus local solar time:

LSTan ¼ tan−tbnð ÞSLP þ LSTbn ð1Þ

where SLP is the slope of LST versus local solar time during the period
10:00–12:00, LSTbn is the LST before temporal normalization (i.e., the
MODIS LSTmeasurement), LSTan is the LST after temporal normalization,
and tbn and tan are the local solar times corresponding to LSTbn and LSTan,
respectively. In this study, the value of tan was fixed at 11:00 local solar
time.

To normalize the MODIS LST to a consistent local solar time using
Eq. (1), one must first determine the SLP. Nevertheless, it is difficult to

directly derive the SLP from the MODIS LST because only one
MODIS measurement is available during the period 10:00–12:00
local solar time. Because the new generation of geostationary satellites,
such as MSG-SEVIRI, can provide thermal infrared data every 15 min,
MSG-SEVIRI-derived LST can be used to establish the relationship be-
tween the SLP and other parameters. In theory, a physical deterministic
model that explains the spatial and temporal patterns of the SLP opti-
mally involvesmany factors, such as incoming solar radiation, elevation,
land cover, wind, and soil moisture (Hengl, Heuvelink, Perčec Tadić, &
Pebesma, 2012). It is, however, difficult and impractical to collect data
for so many parameters. Therefore, three available parameters, NDVI,
SZA, and DEM, were taken into account in this study. NDVI, an index
that has been found to be closely linked with land cover, vegetation
density, and productivity, is included to account for the effect of differ-
ent land cover types on the thermal processes of land surfaces. SZA re-
flects the difference in solar radiation in different zones. Elevation is
recognized as an important factor in characterizing the variation in
LST. A multiple linear regression model was developed to estimate the
SLP from these three variables:

SLP ¼ a1NDVIþ a2 cos θs þ a3DEMþ a0 ð2Þ

where a0, a1, a2, and a3 are the regression coefficients.

4. Results and discussion

4.1. Effect of different months on the SLP estimation

To examine the relationship between the SLP and theNDVI, SZA, and
DEM, a random sample of 100 pixels was selected for each of the six
general land cover classes for each day in January, April, July, and October
2010. A total of 18,600 or 18,000 pixels (i.e., 100 pixels × 6 classes × 31
or 30 days) for each month was used to analyze the effect of different
months on the SLP estimation. Table 3 shows the regression equations
and statistics of the SLP estimation for the different months. All of the
regressions are statistically significant at the 99% confidence level. The ad-
justed coefficient of determination (R2 adj) values range from 0.40 for
January to 0.49 for April. The standard error of the estimate (STD) values
range from 0.55 for July to 0.67 for January.

To evaluate the performance of these regression equations, a
random sample of 150 pixels was selected from the remaining pixels
(i.e., discarding the pixels used to establish the regression equations)
for each class and each day in January, April, July, and October 2010.
A total of 27,900 or 27,000 pixels (i.e., 150 pixels × 6 classes × 31 or
30 days) for eachmonthwas used to validate the ability of these regres-
sion equations to estimate the SLP. Fig. 4 shows the histograms of the
differences between the actual SLP and the estimated SLP using the
regression equations shown in Table 3 for January, April, July, and
October. The root mean square error (RMSE) values of the SLP differ-
ences are 0.69, 0.61, 0.55, and 0.61 for January, April, July, and October,
respectively. The best SLP estimation accuracy was obtained for July,
whereas the worst accuracy was obtained for January. The range in
the results is due to a large range in NDVI during the period of vegeta-
tion growth in July versus a small range in NDVI during the period of
vegetation decay in January.

Table 3
Regression equations and statistics for SLP estimation for January, April, July, and October 2010.

Month Regression equationa R2 adj STD p-Value

January SLP = −1.605NDVI + 3.270cosθs + 0.187DEM + 1.801 0.40 0.67 b0.001
April SLP = −2.559NDVI − 0.205cosθs + 0.148DEM + 3.935 0.49 0.60 b0.001
July SLP = −2.191NDVI + 0.347cosθs + 0.037DEM + 3.096 0.48 0.55 b0.001
October SLP = −1.014NDVI − 0.198cosθs + 0.204DEM + 3.110 0.45 0.61 b0.001

a DEM in km
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4.2. Effect of different land cover classes on the SLP estimation

To analyze the effect of different land cover classes on the SLP estima-
tion, the selected 3100 pixels (i.e., 100 pixels × 31 days) for each class
for July 2010 described in Section 4.1 were used to establish the regres-
sion equations for forest, shrubland, woodland, grassland, cropland, and
unvegetated land. The regression equation established using the selected
pixels of each class for July 2010 is referred to as a sub-class equation,
whereas the equation established using the selected 18,600 pixels
(i.e., 100 pixels × 6 classes × 31 days) of all classes for July 2010
(i.e., the third regression equation shown in Table 3) is referred to as
the all-class equation.

The other selected 4650 pixels (i.e., 150 pixels × 31 days) of each
class for July 2010 described in Section 4.1 were used to evaluate the
performance of the all-class equation and the sub-class equation for
each class. Fig. 5 displays the histograms of the differences between
the actual SLP and the estimated SLP using the all-class equation and
the sub-class equation for each class. Both histograms have similar dis-
tribution patterns for the SLP differences using the all-class equation and
the sub-class equation for each class. The differences between the RMSE
values of the SLP differences using the all-class equation and the sub-
class equation for each class are almost negligible. These results indicate
that it is not necessary to establish regression equations for the SLP for
different land cover types. Nevertheless, as we can see from Fig. 2 and
Table 1, the SLP is related to the land cover type. The value of the SLP in-
creases from vegetation to bare soil. The insignificant differences in the
SLP estimation using the all-class and sub-class equationsmay be due to
the mixture of different land cover types in the MSG-SEVIRI pixels
(3 km × 3 km at nadir).

4.3. Effect of different zones on the SLP estimation

To investigate the effect of different zones on the SLP estimation,
the study area was divided into four zones (zone A: 15° W–0° E, 39°

N–48° N, zone B: 0° E–15° E, 39°N–48°N, zoneC: 15°W–0° E, 30° N–39°
N, and zone D: 0° E–15° E, 30° N–39° N). A random sample of
100 pixels was selected for each zone on each day in July 2010.
The regression equation established using the selected 3100 pixels
(i.e., 100 pixels × 31 days) of each zone is referred to as a sub-zone
equation, whereas that established using the selected 18,600 pixels
(i.e., 100 pixels × 6 classes × 31 days) of the whole study area (i.e., the
third regression equation shown in Table 3) is referred to as the all-
zone equation.

A random sample of 150 pixels was selected from the remaining
pixels (i.e., discarding the pixels used to establish the sub-zone equa-
tions) for each zone on each day in July 2010. A total of 4650 pixels
(i.e., 150 pixels × 31 days) for each zonewas used to assess the perfor-
mance of the all-zone equation and the sub-zone equation for each
zone. Fig. 6 displays the histograms of the differences between the actu-
al SLP and the estimated SLP using the all-zone equation and the sub-
zone equation for each zone. The histograms have similar distribution
patterns in the SLP differences using the all-zone equation and the
sub-zone equation for each zone. There are no significant differences
between the RMSE values of the SLP differences using the all-zone equa-
tion and the sub-zone equation for each zone. These results indicate
that it is not necessary to establish regression equations for the SLP for
different zones. In theory, the SLP is related to latitude, which reflects
the variations of solar insolation in different zones. The insignificant dif-
ferences in the SLP estimation using the all-zone and sub-zone equa-
tions may be due to the relatively small range of latitude of the study
area.

4.4. Sensitivity analysis

The uncertainty of the proposed algorithm was evaluated with a
sensitivity analysis. The uncertainty of the LST after temporal normali-
zation (ΔLSTan) was estimated as the combination of the algorithm
error (ΔLSTA), the uncertainty associated with the uncertainties of the

Fig. 4.Histograms of the differences between the actual SLP and the estimated SLP using the regression equations shown in Table 3 for (a) January, (b) April, (c) July, and (d) October 2010.
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input parameters (ΔLSTP), and the uncertainty of the LST before tempo-
ral normalization (ΔLSTbn):

ΔLSTan ¼ ΔLST2
A þ ΔLST2

P þ ΔLST2
bn

h i1=2 ð3Þ

with

ΔLSTA ¼ 11−tbnð ÞΔSLP ð4Þ

ΔLSTP ¼ 11−tbnð Þ a1ΔNDVIð Þ2 þ a2ΔSZAð Þ2 þ a3ΔDEMð Þ2
h i1=2 ð5Þ

where ΔSLP is the fitting error of the SLP; ΔNDVI, ΔSZA, and ΔDEM are
the uncertainties of NDVI, SZA, and DEM, respectively; and a1, a2, and
a3 are the regression coefficients.

According toWan et al. (2002, 2004), the accuracy of theMODIS LST
is approximately 1 K. As shown in Fig. 4 and Table 3, the fitting error of

the SLP is approximately 0.7. The uncertainty of DEM is approximately
0.03 km, and the uncertainty of SZA is assumed to be negligible. The un-
certainty of NDVI is a function of both the red and NIR reflectance and
can be expressed as follows:

ΔNDVI ¼ 2ρNIR

ρred þ ρNIRð Þ2 Δρred

� �2
þ 2ρred

ρred þ ρNIRð Þ2 ΔρNIR

� �2� �1=2
ð6Þ

where ρred and ρNIR are the red and NIR reflectance, respectively, and
Δρred and ΔρNIR are the uncertainties of the red and NIR reflectance,
respectively.

According to Vermote, Kotchenova, and Ray (2011), the accuracy of
the MODIS reflectance is approximately 0.005 + 0.05 × reflectance.
Assuming that the values of the red and NIR reflectance are approxi-
mately 0.1 and 0.4, respectively, and the uncertainties of the red and
NIR reflectance are 0.01 and 0.025, respectively. The values of ΔLSTan
can be calculated using Eqs. (3)–(6). Fig. 7 displays the values of

Fig. 5. Histograms of the differences between the actual SLP and the estimated SLP using the all-class equation and the sub-class equation for (a) forest, (b) shrubland, (c) woodland,
(d) grassland, (e) cropland, and (f) unvegetated land. Sub-class represents the regression equation established using the selected pixels for each class for July 2010. All-class
indicates the regression equation established using the selected pixels for all classes for July 2010.
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ΔLSTan versus local solar time for July. There are no significant differ-
ences among the values of ΔLSTan for different months. The values of
ΔLSTan are better than 1.3 K during the period 10:00–12:00 local solar
time. It should be kept in mind that the values of ΔLSTan depend on
the accuracy of the LST before temporal normalization. In this study,
the accuracy of the LST before temporal normalization is assumed to
be 1 K, which accounts for approximately 80% of the total error. There-
fore, the uncertainty of the LST after temporal normalization is mainly
due to the uncertainty of the LST before temporal normalization,where-
as that caused by the algorithm error and the uncertainties of the input
parameters is very small.

4.5. Accuracy assessment of algorithm

Because the MSG-SEVIRI can provide the diurnal cycle of LST, the
MSG-SEVIRI-derived LST for four clear-sky days – 2 January, 10 April,
31 July, and 1 October 2010 – was used to evaluate the accuracy of the
proposed algorithm. Taking into account the crossing time of the
Terra-MODIS over the study area, the MSG-SEVIRI-derived LST at
11:00 UTC was represented by the LST before temporal normalization
(LSTbn). The local solar time (local solar time = UTC + longitude / 15)
of each pixel over the study area is thus between 10:00 and 12:00. The
MSG-SEVIRI-derived LST at 11:00 UTC was normalized to 11:00 local
solar timeusing Eq. (1). The values of the SLP for each pixelwere estimat-
ed using the regression equations shown in Table 3. The normalized LST
at 11:00 local solar timewas denoted by LSTan. To derive the actual LST at
11:00 local solar time for each pixel, the diurnal cycle of theMSG-SEVIRI-
derived LST was fitted using the DTC model, improved by Duan et al.
(2013). The LST modeled by the DTC model at 11:00 local solar time
was prescribed as the actual LST (LSTact). All cloud-free pixels over the
study area were divided into 12 groups in 10-minute increments during
the period 10:00–12:00 local solar time. A random sample of 100 pixels
was selected from each of the 12 groups. The selected pixels from all
groups were then used to calculate δLSTbn (δLSTbn = LSTbn − LSTact)
and δLSTan (δLSTan = LSTan − LSTact). Fig. 8 shows the histograms of
δLSTbn and δLSTan on 2 January, 10 April, 31 July, and 1 October 2010.
The RMSE values of δLSTbn and δLSTan are 1.57 (0.52), 1.29 (0.47), 1.50
(0.47), and 1.51 (0.57) K on 2 January, 10 April, 31 July, and 1 October
2010, respectively.

To analyze whether the regression equations of the SLP established
using the data for 2010 can be used to normalize the LST in other
years, the MSG-SEVIRI-derived LST of four clear-sky days – 20 January,
26 April, 3 July, and 26 October 2008 – was selected. Fig. 9 shows the

Fig. 6.Histograms of the differences between the actual SLP and the estimated SLPusing the all-zone equation and the sub-zone equation for (a) zoneA, (b) zone B, (c) zone C, and (d) zone
D. Sub-zone represents the regression equation established using the selected pixels for each zone for July 2010. All-zone indicates the regression equation established using the selected
pixels for the whole study area for July 2010.

Fig. 7.Uncertainty of the LST after temporal normalization (ΔLSTan) versus local solar time
during the period 10:00–12:00.
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Fig. 8. Histograms of the differences between the actual LST (LSTact) and the LST before temporal normalization (LSTbn), as well as the LST after temporal normalization (LSTan), on (a) 2
January, (b) 10 April, (c) 31 July, and (d) 1 October 2010. δLSTbn = LSTbn − LSTact, and δLSTan = LSTan − LSTact.

Fig. 9. Histograms of the differences between the actual LST (LSTact) and the LST before temporal normalization (LSTbn), as well as the LST after temporal normalization (LSTan), on (a) 20
January, (b) 26 April, (c) 3 July, and (d) 26 October 2008. δLSTbn = LSTbn − LSTact, and δLSTan = LSTan − LSTact.
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histograms of δLSTbn and δLSTan for 20 January, 26 April, 3 July, and 26
October 2008. The RMSE values of δLSTbn and δLSTan are 1.37 (0.40),
1.59 (0.47), 1.44 (0.59), and 1.00 (0.60) K for 20 January, 26 April, 3
July, and 26 October 2008, respectively. Comparing Fig. 9 with Fig. 8,
the accuracies of the LST before and after normalization for 2008 are
similar to those for 2010. These results demonstrate that the regression
equationswith the SLP established using the data in 2010 can be used to
normalize the LST in other years.

All cloud-free pixels in the horizontal profile shown in Fig. 3were se-
lected as examples to compare δLSTbn and δLSTan. Fig. 10 displays δLSTbn
and δLSTan versus local solar time during the period 10:00–12:00 on 31
July 2010. The values of δLSTbn range from approximately −2.5 to 3 K,
whereas those of δLSTan range from approximately −1 to 1 K.

To further investigate the discrepancies between the LST before and
after temporal normalization, the RMSE values of δLSTbn and δLSTan ver-
sus local solar time during the period 10:00–12:00 were calculated. All
cloud-free pixels over the study area were divided into 12 groups in
10-minute increments during the period 10:00–12:00 local solar time.
A random sample of 100 pixelswas selected from each of the 12 groups.
The selected pixels of all groups were then used to calculate the RMSE
values of δLSTbn and δLSTan. Fig. 11 shows the RMSE values of δLSTbn
and δLSTan versus local solar time during the period 10:00–12:00 on
31 July 2010. The RMSE values of δLSTbn range from approximately 0.5
to 2.5 K, whereas those of δLSTan range from approximately 0.5 to 1 K.

4.6. Application to MODIS data

Assuming that the MODIS LST exhibits similar variation pattern to
the MSG-SEVIRI-derived LST during the period 10:00–12:00 local solar
time, the proposed method was used to normalize the Terra-MODIS
LST during daytime to a consistent local solar time (i.e., 11:00 local
solar time). As mentioned previously, the uncertainty of the LST after
temporal normalization caused by the algorithm error and the uncer-
tainties of the input parameters is very small. Therefore, the SLP deter-
mined by the MSG-SEVIRI data can be applied to the temporal
normalization of the MODIS LST. As an example, the Terra-MODIS LST
on 31 July 2010 was used to perform the temporal normalization of
LST. Fig. 12a and b displays the Terra-MODIS LST before and after tem-
poral normalization. A comparison of Fig. 12b with Fig. 12a shows that
the spatial variations in the LST after temporal normalization appear
to be more uniform than those in the LST before temporal normaliza-
tion. Fig. 12c presents the differences between the LST before and
after temporal normalization. The LST differences range from −2 to
4 K. Fig. 12d shows the observation time of the Terra-MODIS LST before
temporal normalization. A comparison of Fig. 12c with Fig. 12d shows
that the LST differences are significantly related to the observation time.

The Terra-MODIS LST of six pixels for forest, shrubland, woodland,
grassland, cropland, and unvegetated land in July 2010 was selected as
examples to illustrate the differences between the LST before and after
temporal normalization versus local solar time. These results are
shown in Fig. 13. The LST differences change nearly linearly with local
solar time. The LST differences range from approximately −1 to 2 K
for the forest, woodland, and cropland pixels, whereas those range
from approximately −2 to 3 K for the shrubland, grassland, and
unvegetated land pixels. These results indicate that the SLP values of
the shrubland, grassland, and unvegetated land pixels are greater than
those of the forest, woodland, and cropland pixels, as illustrated in
Fig. 2 and Table 1.

The normalized LST is not validated because of the lack of in situ data
or remotely sensed data from another source. Validation of LST at the
satellite pixel scale is challenging because LST can vary significantly
within a pixel and change within relatively short time periods. In addi-
tion, the number of in situ measurements that match satellite observa-
tions in both time and space is limited. It should be kept inmind that the
normalized LST is only time-consistent, not angle-consistent. The view
angle of the LST after temporal normalization is the same as that of
the LST before temporal normalization. In theory, the Terra-MODIS
LST should be normalized to the same view angle (e.g., at nadir) before
the temporal normalization of LST. Although the literature reports that
directional effects (angular anisotropy) in the LST have been demon-
strated or simulated at the satellite pixel scale (Otterman et al., 1997;
Pinheiro, Privette, & Guillevic, 2006; Pinheiro, Privette, Mahoney, &
Tucker, 2004; Rasmussen, Göttsche, Olesen, & Sandholt, 2011;
Rasmussen, Pinheiro, Proud, & Sandholt, 2010; Ren, Yan, Chen, & Li,
2011; Vinnikov et al., 2012), there is not any practical way to perform
angular normalization of satellite-derived LST, because of the complex-
ity of this normalization.

5. Conclusions

A method for the temporal normalization of the Terra-MODIS LST
during the daywas developed to generate a time-consistent LST product.
This method uses the slope of LST versus the local solar time during the
period 10:00–12:00 to normalize the Terra-MODIS LST to a consistent
local solar time (e.g., 11:00 local solar time). Amultiple linear regression
model for SLP as a function of three variables (NDVI, SZA, and DEM) was
established using the MSG-SEVIRI data. The influences of different
months, land cover types, and zones on the SLP estimation were investi-
gated. The results indicate that it is not necessary to establish the regres-
sion equations for SLP for different land cover types and zones. The soil
moisture and diurnal temperature rangemay be used to further improve
the accuracy of the SLP estimation. Nevertheless, soil moisture and

Fig. 10. Differences between the actual LST (LSTact) and the LST before temporal normali-
zation (LSTbn), as well as the LST after temporal normalization (LSTan) versus the local
solar time during the period 10:00–12:00 on 31 July 2010. δLSTbn = LSTbn − LSTact,
and δLSTan = LSTan − LSTact.

Fig. 11. RMSE values of the differences between the actual LST (LSTact) and the LST before
temporal normalization (LSTbn), as well as the LST after temporal normalization
(LSTan) versus local solar time during the period 10:00–12:00 on 31 July 2010.
δLSTbn = LSTbn − LSTact, and δLSTan = LSTan − LSTact.
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diurnal temperature range products at the MODIS pixel scale are not
available at this stage.

A sensitivity analysis of the algorithm was performed to assess the
algorithm error, the uncertainties of the input parameters, and the
uncertainty of the LST before temporal normalization. The uncertainty
of the LST after temporal normalization is better than 1.3 K when the
accuracy of the LST before temporal normalization is assumed to be
1 K. The uncertainty of the LST after temporal normalization is mainly
caused by the uncertainty of the LST before temporal normalization.
The contributions of the algorithm error and the uncertainties of the
input parameters to the total errors are less than 20%.

The accuracy of the algorithm was evaluated using the MSG-SEVIRI-
derived LST. The RMSE values of the differences between the actual LST
and the LST before temporal normalization are approximately 1.5 K,

whereas those between the actual LST and the LST after temporal nor-
malization are approximately 0.5 K. The regression equation established
using the data for 2010 was applied to normalize the LST in 2008. The
results indicate that similar accuracies for the LST after temporal normal-
ization are achieved for the LST in 2008.

The method was used to normalize the Terra-MODIS LST during
daytime to a consistent local solar time (i.e., 11:00 local solar time). A
comparison of the LST before and after temporal normalization indi-
cates that the spatial variations in the LST after temporal normalization
appear more uniform than those in the LST before temporal normaliza-
tion. The differences between the Terra-MODIS LST before and after
temporal normalization range from −2 to 4 K and are significantly re-
lated to the LST observation time. The differences in the shrubland,
grassland, and unvegetated classes are greater than those in the forest,
woodland, and cropland classes due to the larger values of the SLP in
the shrubland, grassland, and unvegetated classes.

Although this method was developed for the Terra-MODIS sensor, it
can be extended to the temporal normalization of the LST of the other
similar sensors onboard the polar-orbiting satellites, such as the
NOAA-AVHRR and National Polar Orbiting Environmental Sensor Suite
(NPOESS) Preparatory Project (NPP)-Visible Infrared Imager Radiometer
Sensor (VIIRS). A long-term and time-consistent climate data record
(CDR) and Earth system data record (ESDR) can thus be generated from
the measurements of the AVHRR, MODIS, and VIIRS. Nevertheless, prior
to the generation of the CDR and ESDR, co-calibration of the AVHRR,
MODIS, and VIIRS is necessary.
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